IAC-11.E5.1.7 - Cape Town, South Africa

A REALISTIC VISION OF THE MARS EXPEDITION: HOW MANY PEOPLE MUST GO?

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Outline

- The number of people and competencies required for the three-year Mars trip;
- People and systems requirements at the destination;
- Interpersonal dynamics and their effect on space ship habitability;
- Architectural considerations.

CSC, NASA Ames Research Center, Mountain View, USA
SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Exploration

Investments and resources

Great Silk Road

Lynn Baroff

Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Exploration

Investments and resources: relationships and outcomes

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Exploration

Historical overview and comparison

Aspects	Earth Exploration (historical)	Space Exploration (up to now)	Space Exploration (future)
Level of expectancy	Not really known/some limited knowledge	Initially very limited, now high level of knowledge	Some information is available but high level of unknown
Mission timeframe	Several months up to years	Days, up to more than a year on orbit	Several years
Potential danger, hazards \& challenges	Deceases, natural risks, lack of familiar resources \& tools	100\% dependency on supplies from Earth	Maximize ISRU \& independence from supplies from Earth
Diversity: - Social - Cultural - Gender	- Similar social class - Mixed/mission based - Mixed	- No diversity - Some diversity - Very limited	- Mission based (e.g. client-service) - Mixed - Mixed

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Who must take the trip

Mission support disciplines at minimum:

- Aerospace engineering
- Electrical engineering
- Computer science and software engineering
- Thermal engineering
- Material science
- Telecommunications
- Optics
- Navigation and control systems engineering
- Instrumentation
- Radar science

CSC, NASA Ames Research Center, Mountain View, USA
SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

Who must take the trip

Necessity for additional disciplines will depend on crew members' and mission objectives' diversity.
Some mission objectives \& Required specialties
support

Extended science	Geology, geophysics, chemistry, physics, astronomy, astrophysics, meteorology, hydrology, biology
Surface exploration	Electrical, thermal and mechanical engineering, telecommunications, navigation

Medical care
ObGyn, orthopedic or surgical, dental.

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

How many must go

Number of cross-trained personnel will depend on a number of inhabitants and their occupational range.

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

How many must go

Crew number selection influencing factors:

- Quantity of mission goals and objectives;
- List of functions to be performed during the mission;
- Level of expected/required work quality;
- The number of crew needed to complete the function;
- Crew morale support during long-term Mars missions.

CSC, NASA Ames Research Center, Mountain View, USA
SICSA, CoA, University of Houston, Houston, USA

The architectures

Main architectural objectives:

- Provide protection means from external environmental risks;
- Afford internal safety (fire hazards, any type of contamination etc.);
- Ensure health safety (physical and psychological);
- Optimize interior environment arrangements to maximize crew work performance.

CSC, NASA Ames Research Center, Mountain View, USA
SICSA, CoA, University of Houston, Houston, USA

The architectures

Operational design considerations:

- Human factors;
- Crew systems and subsystems;
- Man - machine interactions;
- Functions allocations.

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

IAC-11.E5.1.7 - Cape Town, South Africa

The architectures

Assembly considerations:

- Ship systems and subsystems integration;
- Propulsion systems;
- Launch systems;
- Interfaces.

Total Mission = 926 Days Stay = 441 Days

Lynn Baroff
Olga Bannova

CSC, NASA Ames Research Center, Mountain View, USA SICSA, CoA, University of Houston, Houston, USA

Conclusions

Making the real needs be commonly known, and explaining how current and projected future technologies will contribute to satisfying those needs, can help build appreciation and understanding of the long-term commitment required to explore our solar system.

