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The recent announcement of a return to the Moon and a mission to Mars has made the 
question of human response to lower levels of gravity more important.  Recent advances in 
tether technology spurred by NASA's research in MXER tethers has led to a re-examination 
of the concept of a variable-gravity research facility (xGRF) for human research in low 
Earth orbit.  Breakthroughs in simplified inertial tracking have made it possible to consider 
eliminating the "despun" section of previous designs.  This, in turn, improves the prospect of 
a facility based entirely around a tether, with the human module on one end and a 
countermass on the other.  With such a configuration, propellantless spinup and spindown is 
also possible based on the conservation of angular momentum from a gravity-gradient 
configuration to a spinning configuration.  This not only saves large amounts of propellant 
but vastly simplifies crew and consumable resupply operations, since these can now be done 
in a microgravity configuration.  The importance of the science to be obtained and the 
performance improvements in this new design argue strongly for further investigation. 

 
 

Introduction 
 
The desire to send humans to explore and settle the Moon and Mars is constrained by a very practical question, 
currently unanswered:  what happens to the human body in gravity levels less than 1 g?  The experience of long-
duration exposure to microgravity, on space stations from Skylab to Mir to the International Space Station, has 
demonstrated that such exposure has undesirable effects on humans.  Bone loss, immune system suppression, 
muscle atrophy, and a host of other medical conditions appear during such flights and make readaptation to Earth 
life more difficult.  To counteract these problems, astronauts currently undertake a strenuous program of exercise 
while in space, to prepare their bodies for eventual return to the Earth.  This exercise regimen has been shown to 
improve their recovery times after Earth return, but still leaves them typically in an immobilized condition upon 
landing, although they do recover over time. 
 
The concept of using rotation to simulate artificial gravity has been proposed for many decades.  Not only could a 
properly-rotating space station provide artificial gravity to its crew, but by varying the angular rate of the facility, it 
would be possible to simulate different levels of artificial gravity, thus allowing the crew to simulate the gravity 
levels of the Earth, Moon, or Mars, and test themselves and their equipment for operation in these environments. 
 

 
Figure 1:  A comparison of artificial gravity and zero-g facilities from an early space station study (“Preliminary 
Technical Data for Earth Orbiting Space Station”, NASA MSC-EA-R-66-1, November 7, 1966.) 



As space stations were first examined seriously in the 1960s, both “zero-g” and artificial gravity concepts were 
actively pursued, since planners were not sure whether humans could survive for extended periods without the 
presence of gravitational acceleration.  In such trade studies, the operational challenges of the artificial gravity 
facilities were seen as greater than the “zero-g” facilities; they complicated basic operations such as solar array 
pointing, communications, rendezvous and docking, ingress and egress, and attitude control.  This created a strong 
incentive for mission planners to assess whether a “zero-g” facility was adequate for their needs, and whether the 
human organism could be made to adapt to the environment rather than the other way around. 
 
Human adaptation to microgravity has been fraught with difficulty and surprises.  One of the early surprises was that 
humans seemed to fare quite well in the microgravity environment—after an early period of “space sickness” most 
astronauts became quite adapted to microgravity and even enjoyed it, as was shown on the American Skylab space 
station and the early Russian Salyut stations.  But an insidious change was taking place in the astronauts’ bodies that 
threatened their return to Earth.  Their bones, unloaded from the stresses of operating under gravitational loads, were 
leaching calcium from the bone structure into the blood, where it was excreted.  This process of decalcification 
appeared to continue throughout the duration of the space mission, and left the astronauts dangerously weak when 
they returned to Earth, much like elderly persons who suffer from osteoporosis. 
 

 
Figure 2:  Long-duration space flight leaves cosmonauts weak and unable to stand on their own. 
 
It was clear that the load-bearing bones need to experience stress during the space mission in order to slow the loss 
of calcium.  Strenuous exercise was proposed as a remediation measure during long space flights, and Russian 
experiences on the Salyut 6 space station in the late 1970s showed that 2-3 hours a day of strenuous exercise could 
significantly reduce the effects of decalcification on bone structure.  Indeed, it has now become common practice on 
later space stations, such as Salyut 7, Mir and the International Space Station, for crews to engage in strenuous 
exercise each day to combat the effects of microgravity. 
 
But this countermeasure has a limited effectiveness and comes at a great cost.  The exercise regimes have not been 
shown to stop or reverse the effects on bone structure, only to slow them, and there are other effects to the body 
from prolonged microgravity exposure, including immune system suppression and alternations in blood flow 
patterns that are not counteracted by the exercise regime.  The great cost of the exercise is in useful crew time, a 
significant fraction of which is spent in preparation, execution, and cleanup from the exercise regime.  As we ponder 
missions to the Moon and Mars which may last months and years, the cumulative loss of valuable crew time is a 
significant concern. 
 
Consider a crew on the surface of Mars.  Were they to engage in the same type of exercise countermeasures used on 
the International Space Station, they would consume about 2-3 hours per day of waking time in activities related to 
exercise.  If we assume that they are awake 16 hours per day and that roughly 8 of these hours are engaged in meal 
preparation, hygiene, and crew personal time, we see that only leaves about 5-6 hours per day for scientific 
observations and extravehicular activities.  The “cost” of all this exercise time is not insignificant. 
 
 



 
Figure 3:  Knowing the human response to low gravity could mean the difference between exploring or exercising! 
 
But on Mars, with its gravity 3/8 that of Earth’s, is it necessary to engage in such a level of exercise?  Is the 
gravitational environment sufficient to produce the needed stresses and eliminate the need for exercise as a 
countermeasure?  And if so, how could we know before we go?  Where could we simulate a gravity level similar to 
Mars and assess human performance?  Unfortunately, it is not possible to simulate such a gravitational environment 
for extended periods of time on the Earth.  Brief intervals could be simulated by high-altitude aircraft flying near-
parabolic trajectories, and inclined bedrest could simulate (poorly) the loading patterns on the body, but there is no 
way to simulate Mars gravity for months at a time in a way that specimens could move about and engage in normal 
activities. 
 
In Earth orbit, in a rotating facility, such 
conditions could be accurately simulated for 
extended periods of time.  The cost of doing 
so would be significantly less than sending 
crews to Mars and “finding out” what happens 
to them in that environment.  Indeed, we 
would never threaten the health of a crew on 
Mars by asking them to refrain from exercise 
countermeasures to use them as a “control 
group” to assess response versus a group that 
exercises.  But without such scientific 
investigation, we will be forced to resort to the 
application of microgravity countermeasures, 
neither knowing if they are too much or too 
little for the “mini-gravity” environment of the 
Moon and Mars.  Furthermore, essential 
engineering data on the performance of 
equipment and life-support systems in lower 
levels of gravity could be obtained. 
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Figure 4:  At the risk of oversimplification, we know that 
Earth gravity is fine and zero gravity is not, but what about in-
between? 



Previous Design Concepts and Issues for Variable-Gravity Research Facilities 
 
In a sense, we return to the “fork-in-the-road” taken in the mid-1960s, when microgravity and artificial gravity 
facilities were evaluated one against another.  The microgravity space station path has been taken to its logical 
conclusion for the past 30 years and found wanting—our countermeasures to long-term human microgravity 
exposure are insufficient to insure the long-term well-being of the crew.  Thus let us examine the other, 
“complicated” option, artificial gravity, and see if we can get it to work acceptably. 
 
Inherent in any design for an artificial-gravity facility is the need for a facility to rotate sufficiently to produce the 
desired acceleration.  The acceleration (a) is a function of both the moment arm (r, the distance from the rotational 
center) and the angular rate (ω). 

 ra 2ω=  (1) 

With these two variables, one can be traded off against another to achieve the desired acceleration.  Obviously, it 
would be attractive to increase angular rate to decrease the rotational moment arm, but there are real constraints on 
this—angular rate cannot be made so high that the crew feels significant discomfort or sickness.  Several studies 
have attempted to quantify the maximum angular rate that can be tolerated by humans over an extended period of 
time.  The results have been inconclusive and have ranged from 2-6 RPM, mainly due to the difficulty of accurately 
measuring human response to the angular rate. 
 

 
Figure 5:  A variety of artificial-gravity space stations concepts, all with constant moment-of-inertia configurations. 
 
But given the maximum angular rate that can be tolerated and the design level of acceleration, the basic length of the 
moment arm can be quantified, and that fundamental length constitutes a sort of “yardstick” in the design of 
artificial gravity facilities.  We see in Figure 5 a number of artificial gravity station concepts, each of which is 
fundamentally sized by the length of the rotational moment arm.  Each of these is also an example of a configuration 
with a fixed moment-of-inertia, which is a basic consideration in determining the spin-up and spin-down of such a 
facility. 
 
The design of the facility is further complicated by all the “irreducible complexity” 
of a manned space station.  Obviously, there must be stability, power, energy 
storage, and crew exchange capability.  There must be the capability to communicate 
with the ground and/or data relay satellites.  All of these tasks are made much more 
difficult, at least on first examination, by a space station that is rotating. 
 
Let us consider power, communications, and attitude control.  All of these have the 
common element of requiring some type of pointing.  The power system (ostensibly 
a solar array) must point toward the Sun.  The communications antenna must point 
toward the ground or to a data relay satellite.  The attitude control thrusters must 
point in some inertial orientation to create the necessary torques and translations to 
stabilize the facility.  On a rotating space station, all of these pointing directions are 
in constant movement relative to the facility itself and require agile tracking 
systems. 

Design 
RPM 

Moment arm 
(for 1.0 g) 

1.0 895 m 
2.0 224 m 
3.0 99 m 
4.0 56 m 
5.0 36 m 
6.0 25 m 

Table 1:  The length of the moment 
arm for a given artificial gravity level 
and angular rate represents a 
“yardstick” in the size of a rotating 
facility. 



Then there is the issue of getting crew on and off the station.  If, as 
it will be shown, there is a substantial penalty for spinning up and 
spinning down the facility using thrusters, then the alternative is to 
direct the crew and supply transfer to a location on the facility that 
is either not rotating or rotating very slowly.  Thus we see the 
common feature of a “despun” or slowly-spinning hub on many of 
these rotating station concepts.  But the hub must then be connected 
to the pressurized modules that are under artificial gravity—either 
by a long pressurized tunnel or by some sort of elevator car.  Either 
option is more complex than simply docking the crew and supply 
craft directly to the pressurized module—but that requires spin-up 
and spin-down. 
 
There is also the significant question of crew escape.  If the crew for 
some reason needs to leave the facility and return to Earth, on very 
short notice, how do they do so?  Is there an emergency-return 
vehicle?  Where is it located—at the hub?  Do they have to “climb 
the ladder” or ride an elevator to get there?  What if one of them is 
severely injured and requires immediate medical attention?  Do they 
despin the station, and how long will that take? 
 
So this is a classic case of “picking your pain” in engineering—
which design option entails less cost and risk?  Until very recently, 
it would have been the “classic” design that has been seen in the 
previous pictures.  But very recent developments in tether 
technology, energy storage, tracking systems, and manned vehicles 
make a new and much simpler option finally feasible. 
 
 
 

Analysis of a Simplified Facility 
 
In the interest of analyzing some different options, let us examine a facility that is essentially a dumbbell, with a 
manned module on one end and a countermass on the other.  Let us further assume that the two masses are 
connected by a massless structure such as a truss or tether.  Given the design moment arm (r0) and the total mass (M) 
of the facility (manned module mass plus countermass), it is useful to define a countermass fraction (y)—a fraction 
of the total mass that comprises the countermass.  With this definition, the total separation length (ℓ) between the 
manned module and the countermass can be found as a function of the countermass fraction and the design moment 
arm alone. 
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Figure 7:  A “dumbbell” model of the facility, connected by a massless structure, showing the relationships between 
the total mass, pressurized module mass, moment arm lengths, and total length. 
 
The basic question before us is how should the facility spin up to the desired spin rate?  Based on the basic equation 
for angular momentum: 
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Figure 6:  An artificial-gravity facility 
concept developed at the 1989 International 
Space University summer session. 



 ωIH =  (2) 

It is clear that if a given value of ω (angular rate) is the goal, then there are two ways to achieve it.  One is to alter 
the total angular momentum of the system, leaving the moment-of-inertia fixed, until the desired angular rate is 
achieved.  The other assumes that the initial angular momentum is greater than zero, and proceeds to alter the 
moment-of-inertia until the desired angular rate is achieved.  In simpler terms, the first technique uses rockets to 
spin up the facility and change the angular momentum, whereas the second retracts tether to change the moment-of-
inertia and increase the spin rate, much like a figure skater pulling her arms in during a spin. 
 

 
Figure 8:  A recent concept for a Mars exploration vehicle using nuclear electric propulsion and artificial gravity.  It 
has a pressurized module on one end and the nuclear reactor, power conversion system, and radiators on the other.  
It also has a fixed moment-of-inertia and relies on propulsive spinup to achieve the angular rate necessary to create 
the desired artificial gravity at the pressurized module. 
 
Constant Moment-of-Inertia, Variable Angular Momentum (propulsive maneuvers to change angular rate) 
 
Let us first examine the case of the fixed moment-of-inertia and the propulsive spin-up.  This technique has the 
advantage that it does not require any initial rotation rate to begin.  But what is the proper length of the tether and 
should the countermass be large or small?  Before examining the equations, simple reasoning says that if the 
countermass is small, the separation length will be large, and so will the moment-of-inertia.  But if the spin-up 
thrusters are located on the countermass, then they will have a long moment arm with which to change the angular 
momentum.  So which effect will dominate?  Let us solve for the moment-of-inertia of the system in terms of the 
pressurized module mass (m0), the design moment arm (r0), and the countermass fraction (y). 
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As expected, the moment-of-inertia is inversely proportional to countermass fraction, so as the countermass gets 
smaller (which is desirable) the separation length increases and the moment-of-inertia increases.  Now let us define 
the angular impulse (J) as the integral of propulsive force over time multiplied by the length of the moment arm.  
The angular impulse is also the change in angular momentum and, for a facility with a constant moment-of-inertia, 
proportional to the change in angular rate. 

 HIFdtrJ Δ=Δ== ∫ ω  (4) 

If we assume that the spin thrusters are mounted on the countermass so as to maximize their effectiveness, we can 
substitute the definition of the countermass moment arm (r1) into the equation and simplify. 
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If we further assume that we begin with an angular rate of zero, then the design angular rate (ω) is essentially the 
same as the change in angular rate (Δω); this allows further simplifications in the equation by substituting the 
definition of the design moment arm (r0 = a/ω2). 
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Therefore, if we assume that the mass of the pressurized module, the desired acceleration, and the design angular 
rate are given, the only variable we can use to minimize the propulsive impulse required to spin-up the facility is the 
countermass fraction, which this equation indicates should be minimized.  This is a somewhat surprising result, as it 
might have been expected that the moment-of-inertia, which was quadratic with length, would dominate over the 
spin-up torque, which was only linear with length.  Nevertheless, any facility that uses spin-up thrusters must have a 
“smart” countermass and deal with the issues of resupply of propellants to the countermass and active control. 
 
Constant Angular Momentum, Variable Moment-of-Inertia (tether reeling to change angular rate) 
 
Let us examine the other case, altering moment-of-inertia and conserving angular momentum to achieve the desired 
spin rate.  Let us again return to the equation for moment-of-inertia, this time solving it in terms of total mass and 
total separation distance. 
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This form of the moment-of-inertia equation can be shown to be identical to the previous derivation, in the limiting 
case of a separation distance required for the design moment arm and countermass fraction.  But the real utility of 
this new form of the equation is in cases where the separation distance is varied to achieve a variable moment-of-
inertia.  This equation also shows the quadratic dependence of moment-of-inertia on total tether length.  If we 
assume that the facility is initially oriented along the radial direction in its orbit around the Earth (gravity-gradient 
configuration) then it will have some rotation rate commensurate with that orbital period, and hence, some initial 
value of angular momentum.  Let us assume that the subscript 0 refers to the fully-extended length and the subscript 
1 refers to the length in the retracted, design condition. 
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Assuming that angular momentum is conserved during tether reeling (which can be achieved through proper timing 
of tether extension or retraction) then the ratio between initial angular rate and final angular rate can be shown to be 
a ratio of initial and final length.  The subscripts 0 and 1 again correspond to the extended and retracted 
configurations. 

 
( )
( )

2

1

0
2

1

2
0

0

1

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
−

=
l

l

l

l

yyM
yyM

ω
ω

 (11) 

Hence, for a desired angular rate, this equation can be used to assess the amount of tether that must be retracted to 
achieve that rate for a given initial angular rate.  The angular rate ratio will then be the square of the retraction ratio 
(initial length/retracted length).  Thus, within these simplifying assumptions, the spinup of a rotating facility is 
independent of its total mass and its mass distribution, but only depends on the retraction ratio. 



1.  When the tether is 
fully extended and the 
facility is in a stable, 
radial orientation, begin 
retraction of the tether.

2.  As the tether retracts, 
angular momentum is 
conserved and the facility 
begins to rotate.

3.  Retraction continues 
until the facility is 
spinning at the proper 
rate to yield the desired 
artificial gravity levels.
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Figure 9:  The facility can be spun-up through a tether retraction technique. 
 

3.  When the tether is 
fully extended the facility 
is stabilized in a gravity-
gradient configuration.2.  The tether is extended 

and angular momentum 
is conserved—rotation 
rate slows quickly.

1.  To stabilize the facility 
for docking and other 
“zero-g” activities, all the 
operations proceed in 
reverse.

3.  When the tether is 
fully extended the facility 
is stabilized in a gravity-
gradient configuration.2.  The tether is extended 

and angular momentum 
is conserved—rotation 
rate slows quickly.

1.  To stabilize the facility 
for docking and other 
“zero-g” activities, all the 
operations proceed in 
reverse.

 
Figure 10:  The facility can be de-spun in a similar yet reverse manner. 
 



The significance of this equation is in its independence on total mass and mass distribution.  This 
means that no matter what the total mass of the facility, no matter what the countermass fraction, 
no matter what the final length, this spinup technique could be used.  This gives the designer an 
enormous amount of additional flexibility in the design of the facility, since now all of the 
“smart” mass (pressurized module, power system, tether reel and deployer) can be located at one 
end of the facility and the countermass can be “dumb” mass, such as the spent upper stage of the 
rocket that launched the facility initially. 
 
Design Concept and Concept of Operations of the simplified xGRF 
 
It is clear that the resources to pursue a variable-gravity research facility in space will not be 
available unless the costs of such a facility are reduced dramatically.  And in order to reduce 
costs, the mass and complexity of the facility must be reduced dramatically.  A tentative goal for 
this study was to reduce the mass of the xGRF to the level where the facility might be launched 
on a single flight of a large rocket such as the Delta IV Heavy, which can carry a 24 metric tonne 
payload to low Earth orbit. 
 
Of course, it is not sufficient to merely hope for cost and mass reductions—there must be real 
design innovations that “change the equation”, so to speak, and permit a design solution that is 
actually simpler and cheaper.  The main advantages to pursue in this design for mass and cost 
reduction are 
• Simplified spin control through tether reeling (variable moment-of-inertia) 
• The elimination of any despun elements through the spin control technique and the use of 

unique pointing mechanisms (Canfield joints). 
• Simplification of crew exchange, consumable resupply, and emergency escape, through the 

use of standard “zero-g” docking made possible through the ease of spinup and spindown. 
 
The design concept for consideration is a facility that is much like a simple dumbbell connected 
by a variable-length tether.  On one end of the facility would be the pressurized module where 
the crew would live and conduct their experiments.  For mass savings, this module would 
probably be an inflatable pressurized module based on the “Transhab” technologies developed at 
Johnson Space Center in the late 1990s and now being pursued by Bigelow Aerospace.  At the 
one end of the pressurized module would be a docking port for an unmanned logistics module or 
a manned capsule such as the proposed Crew Exploration Vehicle.  The docking port would be 
designed for low-gravity operations but would include “hard-docking” mechanisms that could 
firmly attach the crew transfer vehicle to the facility while it is spinning (during artificial-gravity 
operations).  This continuous connection to the facility allows the crew transfer vehicle to serve 
as an “escape module” for the crew in the event that they needed to leave the xGRF and return to 
Earth rapidly. 
 
In order to pursue this simple mode of rendezvous and docking operations, it is necessary to have 
a mechanism for spinning up and spinning down the facility rather quickly.  A spinup/spindown 
technique based on tether reeling has been proposed which accomplishes this need without the 
consumption of propellant.  Furthermore, this technique can reduce spin rate very rapidly in the 
event an evacuation is required as well as generate emergency power, if needed, during such an 
evacuation.  While angular momentum is conserved, rotational energy is decreased, and 
electrical power would be generated by the reeling motor as the tether is reeled out.  To reel the 
tether in, rotational energy must be added, and this energy (to drive the reel) would be provided 
by flywheel energy storage systems which would be charged by solar panels. 
 
Another problem with such a simple facility that has been raised in past studies is the difficulty 
of tracking inertial and pseudo-inertial targets from a rotating facility.  To generate power, solar 
arrays are required to track the Sun.  Communications probably must track a pseudo-inertial 
target such a TDRS satellite in geosynchronous orbit.  And thrusters would need to be able to 
point at inertial thrust vectors during rotating operation. 
 Figure 11: xGRF 

concept 



Solar arrays, communications systems, and thrusters would all need to transfer power, data, and fluids across 
rotating joints or slip rings if they were to be mounted near the pressurized module and yet fulfill their duties.  These 
fluid, data, and power transfers could become very unpleasant development problems.  Fortunately, several recent 
innovations make such operation possible without any sort of rotating connections. 
 
The key is a unique mechanical joint developed by Dr. Stephen Canfield of Tennessee Technological University.  
The “Trio Tri-Star Carpal Wrist Robotic Joint”, mercifully referred to simply as the Canfield joint, is a “parallel” 
mechanism that allows a structure to point at an inertial target while being mounted to a rotating platform.  Fluid, 
power, or data connections can be made from one side of the joint to the other because the two sides of the joint do 
not differentially rotate, even though the joint itself may be bent 90 degrees or more. 
 
The kinematic behavior of the Canfield joint is extremely difficult to describe in words, and not much easier to 
discern in still pictures, but suffice it to say, seeing is believing—the joint is truly capable of smooth pointing and 
orientation within a hemisphere. 

 
Figure 12:  A series of still pictures showing a typical reaction-control thruster mounted on a Canfield joint, capable 
of pointing any direction within a hemisphere. 
 
The parallel structure of the joint not only gives it tremendous strength, but three degrees of freedom—altitude, 
azimuth, and “plunge”.  The first two degrees are sufficient to allow it to point to any direction within a hemispheric 
workplane.  And unlike other structures, the joint can access this entire workspace without encountering 
mathematical “singularities” that make solution of the base angles impossible.  The joint is driven by three actuators 
on each of the three base legs.  Any commanded direction corresponds to a unique solution of the three angles 
between the base and the base legs. 
 

 
Figure 13:  A unique arrangement of solar arrays mounted on Canfield joints enable constant solar tracking at any 
beta angle on a rotating facility with a minimum of bending loads across the array. 
 
As shown in figures 10 and 11, liberal use of Canfield joints on the xGRF will enable solar tracking, high-data-rate 
communications, and even active propulsive stabilization to take place during the rotation of the facility.  This, 
combined with the ease of spin rate change made possible through tether reeling, enables the deletion of the despun 



section and a tremendous overall facility simplification.  These are the basic reasons to project a significant 
reduction in facility mass and cost. 
 
Design Sequence 
 
If the reader desires to design a variable-gravity facility in the manner described in the paper, the following design 
sequence is recommended, at least for a rough-order-of-magnitude, conceptual design: 
 
1. Select the design artificial gravity level and the maximum angular rate of the facility in that condition.  This 

information will determine the length of the moment arm from the center-of-mass of the facility to the habitat 
module in the retracted, spinning configuration.  For instance, if it was desired to have a rotating facility with an 
angular rate of 4 rpm and an artificial gravity level of 1-g, the distance between the pressurized module and the 
center-of-mass would be: 
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2. Using the length of that moment arm and the countermass fraction, determine the total length of the tether in the 
retracted, spinning configuration. If the countermass represented 10% of the total facility mass and the 
pressurized module represented 90% of the total mass, then the total length of the tether in this configuration 
would be: 
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3. Using the initial angular rate of the facility (in its gravity-gradient configuration) and the maximum angular rate 
of the facility, calculate the retraction ratio. By assuming that the facility is initially in a gravity-gradient 
stabilized, radial configuration rotating the Earth at some orbit, the initial angular rate of the facility can be 
calculated.  If we further make the assumption that the facility is in an essentially circular orbit, then the angular 
rate can be calculated from the orbital radius and the Earth’s gravitational parameter: 
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Based on these two angular rates, the retraction ratio can be calculated: 
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4. With the total retracted length and the retraction ratio, calculate the fully extended length—the length of the 
tether in the gravity-gradient configuration. 
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These calculations can also be expressed in one equation:  
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In addition to these calculations, it is also important to keep track of the tip velocity of the tether at the facility end, 
insuring that should the tether be severed, that an immediate reentry of the facility does not result.  For this case, the 
tip velocity at the facility end would be  
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From a 500-km circular orbit, a 23.4 m/s ΔV applied at the worst possible time in the tether’s rotation would result 
in a drop to a 500 x 416 km orbit, insufficient to cause a reentry.  Nevertheless, as a design proceeds, the designer 
should be careful to note the worst-case, severed-tether orbital condition and insure it is sufficient to preclude 
immediate reentry; angular rates greater than 2 RPM generally prevent this constraint from being violated. 
 
Fractional Retraction Calculations 
 
Often it will be desirable to design the facility to one condition, yet operate it in another.  For instance, it is likely 
that the facility will be designed to a maximum acceleration of 1 g at some maximum angular rate, yet will operate 
most of the time at a fractional level of that acceleration, such as 1/6 g for investigations into lunar gravity effects. 
 
Given some initial condition (fully-extended, gravity-gradient orientation) and some design condition (1-g operation 
at a maximum angular rate), what is the amount of retraction and the angular rate of an intermediate condition?  Let 
us extend the use of the subscripts used previously—0 is the fully-extended, gravity-gradient configuration, 1 is the 
retracted, design configuration, and 2 is the intermediate, partially-retracted state. 
 
To begin, let us assume that the intermediate level of acceleration (a2) is based on some intermediate level of angular 
rate (ω2) as well as on an intermediate length moment arm (r2).  The total length of the tether (ℓ2) needed to support 
this acceleration level is based on the moment arm and on the countermass fraction. 
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The problem now is that we do not know either the angular rate or the total length necessary to generate these 
conditions.  Fortunately, we can use the assumption that the facility has a constant angular momentum to relate 
angular rate and total length, as we did previously. 
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We then substitute for the result for intermediate angular rate and solve for the intermediate tether length: 

 3
2

4
1

2
1

4
2

2
4

1
2

1
2

l

l

l

ll yya ωω
==  (22) 



 
3
1

2

4
1

2
1

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a
yl

l
ω

 (23) 

This relationship is a bit cumbersome, and can be simplified by recognizing that the design acceleration (a1) is 
calculated from the design angular rate, the design tether length and countermass fraction. 
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We then substitute that definition into the intermediate length equation (Eq. 23): 
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Let us redefine the intermediate acceleration (a2) as a fraction (x) of the design acceleration (a1). 
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This simple relationship can be used to calculate the intermediate length given only the design length and the 
fraction of the design acceleration.  This is particularly useful when the design acceleration is 1 g, since the fraction 
will then correspond to the fractional acceleration (i.e. 3/8 for Mars gravity, 1/6 for the Moon).  Furthermore, we can 
also solve for the intermediate angular rate (ω2) using the intermediate length (ℓ2): 
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Now both of these relationships can relate the intermediate angular rate and length to the design angular rate and 
length, based only on the fraction of acceleration between the design and intermediate conditions. 
 
This relationship can also be used to show how quickly acceleration at the facility will be reduced as the tether is 
extended. 
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The fractional acceleration will fall off as the cube of the ratio of design length to intermediate length.  Hence, if a 
facility is operating in a 1-g condition and for some reason, a rapid spin-down is required, then the tether can be 
extended (releasing rotational energy, as was noted earlier) and the acceleration will plummet.  When the tether is 
twice the design length, the acceleration level will be 1/8 of the design level.  At 4 times the length, the acceleration 
is 1/64, and so forth.  This capability for very rapid spin-down could be very important in accident or escape 
scenarios, as it is likely that spin-down through tether extension will be far more effective at reducing spin rate 
rapidly than a propulsive spin-down.  The reason for this is that the propulsion system would linearly spin-down the 
facility as a function of the length of its burn (1/8 of the spin would require 7/8 of the burn duration) whereas the 
tether extension technique spins-down as a function of the cube of the extension ratio. 
 



As was mentioned previously, it is important to consider the effect of tip velocity on the design in case of an 
accidental break of the tether.  Does tip velocity increase in these fractional retraction conditions?  Let us examine 
the intermediate value of tip velocity (v2). 
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We see from this expression that so long as the fractional acceleration desired is less than the design acceleration, 
the fractional tip velocity will be less than the design tip velocity.  If the design tip velocity is within reentry 
constraints, then the fractional tip velocity will not be a problem. 
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Figure 14:  A design structure matrix showing the interactions between the different design variables and 
subsequent design calculations.  The specific values displayed correspond to the design inputs given. 
 
To summarize, the equations that enable one to start with some initial conditions and constraints, and construct a 
design for a variable-gravity facility based on these constraints, have been given herein.  In an attempt to graphically 
depict the interactions and interplay between the design constraints and the results of the calculations, a visualization 
method called a “design structure matrix” is given.  In the DSM, each input or calculation result is represented as a 
single box.  The procedure begins with the box in the uppermost corner of the diagonal, and then proceeds step-by-
step down the diagonal.  Red boxes indicate primary inputs, and green boxes indicate calculations (dependent on 
previous calculations and primary inputs).  For each calculation, the previous calculations or primary inputs upon 
which it depends are indicated by lines along the lower diagonal of the matrix.  In this manner, the relationships 
between each calculation can be rather easily visualized. 
 
 
 
 



 
Figure 15:  Graphical depictions of the variable-gravity research facility concept, showing the inflatable pressurized 
module and the capsule hard-docked to it.  The tracking solar arrays and tether deployer/reel, connected to the spent 
upper stage of the launch vehicle at the far end (serving as a countermass) are also shown. 
 

Conclusions 
 
The need for a variable-gravity research facility is clear—we must know how humans and equipment respond to the 
partial-gravity environment of the Moon and Mars.  Previous designs for such facilities have been large and 
complicated because they have pursued fixed-moment-of-inertia concepts and propulsive spin rate change.  These 
decisions have been made, in large part, on the complications to the facility from crew exchange, resupply, and 
pointing of power and communications equipment.  Recent breakthroughs in pointing mechanisms allow the 
consideration of facilities that have no “de-spun” sections, which further allows the consideration of spin control 
based on a variable moment-of-inertia (tether reeling).  The design equations have been described and show that the 
facility may be made small enough to launch on a single Delta 4 Heavy.  These calculations also show that a large 
reduction in mass (and hopefully cost) over previous designs is feasible with these new technologies and techniques. 
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