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CONCEPTUAL DESIGN AND EVALUATION OF SELECTED SPACE STATION CONCEPTS

1.0 INTRODUCTION

1.1 Purpose and Objectives

The purpose of this report is to document the results of a brief special
emphasis Space Station Configuration Study conducted at the Johnson Space
Center from November 2 to December 16, 1983, The objectives of the study were
as follows:

a. Define candidate Space Station configuration concepts to meet the
NASA Headquarters Concept Development Group (CDG) requirements.

b. Produce engineering and programmatic data on these concepts suitable
for NASA and industry dissemination.

c. Produce a data base for input to the CDG's evaluation of generic
Space Station configurations and for JSC use in the critiose of the CDG's
generic configuration evaluation process.

This special emphasis study represents a temporary focusing and acceleration
of a longer term in-house Space Station study, which was initiated at JSC in
early 1983 (reference 1-1) and is scheduled for completion in April 1984. The
need for temporary focusing and acceleration was prompted by necessity for
developing a greater depth of understanding of candidate configurations which
existed at the time in support of program and technical planning activities
(i.e. SE&I plan and work package options). 1In addition, this study supports
the CDG study task 11 entitled "Alternate Configurations and Controllability."
It should be noted that this study is not a general Space Station
configuration study aimed toward definition of new and/or optimized Space
Station concepts. Rather, specific configuration concepts were selected at

the cut-set for -efinement of definition to meet the CDG requirements and f{or




evaluation in terms of selected criteria. Moreover, system and subsystem
selections and design approaches were based on trade-off study results from
previons studies. In some icstances, where trade study results were not available,
decisions were made based on engineering judgment to facilitate system definition
within the study time allowed. In such instances, the decisions were roted and
identified as issues for future study. Also, some inconsistencies in data may
exist from section to section due to limited time to iterate results.

The organization of this report is arranged to present the definition and
evaluation of each of the candidate concepts on an individual stand-alone basis.
Section 2.0 provides an overview description of each configuration concept.

Section 3.0 presents functional description and evaluation of each configuration 1n
terms of user, crew, operation, and safety accommodations. Engineering and cost
evaluations are also provided in section 3.0. Section 4.0 provides more detailed
discussion of subsystem definition and section 5.0 delineates the technical and
programmatic issues identified for future study. Section 6.0 provides a listing of

the personnel involved in this .tudy.

1.2 Background

JSC has been invcl.ed in Space Station study activities, both in-house and
contracted for several years. The in-house study activity was intensified

shortly after May 20, 1982, when the Space Station Task Force Group (SSTF) was
established at NASA Headquarters. The systems working group of the SSTF identified
a large number of Space Station "trade studies" within the purview of the

system definition (Book 5) activity. JSC cupported these trade study activities

by performing approximately 30 different system and subsystem studies. The



initial results of these studies have been documented in Book 5 and related
documents. To provide a means of conductins these studies in an organized
fashion, an in-house Space Station study statement of work (SOW) was produced
by the Space Station Project Office and was implemented by the JSC Systems
Engineering and Integration (SE&I) Panel organization.

The SOW defined a comprehensive list of system level and subsystem level
tasks, including configuration alternatives definition and evaluation. The
SOW identified three configuration concepts for study: a modular, bullding
block concept such as the Space Operations Center (S0C), which had been under
study at JSC since 1979; a triangular truss structure concept (delta-truss)
previously proposed by JSC (reference 1-2) and concepts involving the use of
spent STS external tanks (ET), briefly described in reference 1—3; Detailed
study of the ET concepts were not undertaken because a brief study indicated
limited capability to meet program requirements and excessive cost for the
required unique launch system (reference 1~-4).

During the course of the study, another truss structure ccncept with the
characteristics of low aerodynamic drag with an earth oriented flight mode
vas introduced. This concept was identified as the big "T" concept. 1In
addition, the SOW study was expanded to include definition of flight test bed
concepts that could be utilized for development testing and subsequently used
as elements of an operational Space Station,

The mission and associated system requirements initially utilized for the SOW
study were based on an early assessment of the Mission Analysis Study (MAS)
results (reference 1~5). The requirements thus developed were generally
consistent with the final results of those produced by the MAS contractors;
however, when the requirements were synthesized by the Missions Requirements Working

Group and subsequently adopted by the CD5 during May 1983, several of the



requirements were significantly more demanding than previously indicated by

most of the MAS contractors. Figure 1.2~1 shows a summary comparison of the

MAS contractor, CDG and baseline in-house study requirements. Note that the CDG
requirements for crew size and power are roughly twice those for the MAS ard
in-house baseline studies.

The special emphasis configuration study, which is the subject of this report,
utilized the same basic configuration concepts defined in the SOW study. A

major task of the study was to resize the configurations and to rearrange and
augment elements of the configurations to meet the current Headquarters CDG
requirements shown in figure 1.2-2. In summary, the configuration concepts

selected for this study and their primary unique characteristics are outlined
below. |
o Building Block (BB)
~= Built up by interconnecting of essential elements, i.e., minimum
hardware launch to orbit L
~— Modules earth oriented
-- Solar arrays sun tracking
o Delta Truss
-- Rigid overall configuration
-- Area available on truss substructure for affixing hardware/mission
equipment
-~ Near solar inertial flight orientation.
o Big-T Truss
-- Stiff overall configuration
-- 4area railable on truss substructure for affixing “-2rdware/mission
equipment.

-= Modules near earth oriented




s -= Gravity-gradient flight orientation

i

T - Minimum drag orientation solar array (streamline), solar array semi
3

‘

solar oriented.
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2.0 CONCEPT OVERVIEW

2.1 Summary

Three configuration concepts have been defined for evaluation in this study:
the building block, delta and the "T." Each concept emphasizes a different
set of design drivers.

The building block concept attempts to minimize structure and subsystem
hardware. It uses the pressurized modules a. che structural foundation of the
station. The core station is earth-oriented and the s~lar arrays, mounted on
booms, are oriented toward the sun.

The delta uses a triangular truss structure for independent attachment of
station elements to maximize rigidity and enhance controllability and mission
versatility. The delta is approximately solar-oriented with the array,
mounted on one face of the triangle, at a constant angle to the orbit plane to
eliminate secular gravity gradient torques. Solar orientation simplifies
thermal control.

The "T" minimizes aerodynamic drag by maintaining the array parallel to the
velocity vector. It also uses a truss structure for enhanced rigidity,
element independence, and miscion versatility. The "T" is earth-oriented and
is arranged for gravity gradient stability. The solar array is approximately
twice as large as a fully sun oriented array. The CDG requirements shown in
figure 1.2-1 were interpreted as requiring the module lengths, viewing
requirements, etc., as shown in figure 2.1-1 for the purposes of defining

concepts for this study.
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2.2 3uilding Block Confi

guration

2.2.1 General Arrangemen

t

The building block concep

base to which the compone

t utilizes the pressurized modules as a structural

Lt parts of the station are attached. The

Pressurized modules at I0C (figure 2.2-1) are arranged in a quadrangle for

safety and efficient inte
conditioning, radiators a
the plane of the quadrang
The growth configuration
modules. Additional powe
booms.

Hangars, manipulators, ar

ports at the corners of ¢

rnal crew movement. Eleccrical power generation and
nd antenna. are mounted on two booms perpendicular to
le.

(figure 2.2-2) adds two quadrangles of pressurized

r and radiator components are mounted on the existing

d other external elements are attached to berthing

he quadrangles.

(see Figure 2.2-3). This
provide approach paths fo

and celestial viewing. R

is intended to provide gravity gradient stability,
r the Orbiter, OMV and OTV, and permit adequate earth

eorientation in pitch is required for orbit reboost

because of the thruster location.

Two Orbiter berthing port

S are provided. These are shown in figure 2.2-1 for

I0C and 2.2-2 for the growth version. Ports are also available for

installation of temporary

modules in addition to manipulators, hangars, etc.



2.2.3 Elements

The building block concept comprises a number of pressurized and unpressurized

modular elements, arranged as shown in figures 2.2-1 and 2,2-2,

2.2.3.1 Command/Control Module (C/CM)

The C/CM is the primary command and operations work station. It also provides
crew support in the event of functional loss of the habitation module in the
I0C phase. The C/CM is arranged as illustrated in figure 2.2-4., Berthing
mechanisms are installed at both ends. Overall length between berthing
interfaces is 264", to provide volume for avionice and contingency crew
accommodation and to maintain a standard moduie length for assembly
versatility. One C/CM is required at IOC; a second C/CM is added in the

growth station.

2.2.3.2 Habitation Module (HM)

The HM (figure 2.2-5) is the primary location for all crew support functions,
including food, hygiene, waste management, health maintenance, sleep, and
recreation for a crew of eight. A minimal command scatic- provides backup
capability in case the C/CM becomes unusable. Overall length between berthing
interfaces is 528", or twice that of the C/CM. The IOC station includes one

HM and the growth station two.

2.2.3.3 Laboratory Module (LM)

The LM provides a pressurized facility for scientific, developmental and
production activities on the station. It includes interfaces with station
utilities such as electrical power, thermal control, data management,
cormunications and life support. It also provides structural mounting for
interior user equipment. It is built in two sizes which are structurally

identical to the C/CM and HM respectively. This permits a late choice between

10
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the adaptability of smaller modules and the structural efficierncy and internal

volume of the larger module because two short LM's can be replaced in the
configuration by one long LM or vice versa. Two short LM's are provided in
the IOC station. Four short LM's and one long LM are added in the growth
phase. This is two small LM's in excess of the specified requirement in the
growth station; the additional LM serves to close the module quadrangles and

avoid the development of a special tunnel.

2.2.3.4 Interconnect Module (IM)

The IM (ficure £.2-6) serves primarily as a means of connecting station
elements at right angles vithout wasting valuable volume in the 14 ft.
diameter modules for side ports. The IM has six orthogonal berthing ports
that can interchangeably accommodate the Shuttle Orbiter, pressurized staticn
modules, manipulators, hangars, and other station elements. It can also be
equipped as an airlock for two crewmen. Four IM's arc required on the IOC

station and four more on the growth version.

2.2.3.5 Logistics Module

The logistics module serves as a carrier for supplies and equipment brought
from earth and for products and waste waterjal to be returned. It is
structurally similar to the C/CM with a single berthing port on one end and a

rack for tanks and other external stores on the other end.

2.2.3.6 Electrical Power Unit

The electrical power generation subsystem is built in modular form to
facilitate installation. Each unit consists of solar array packages, energy
storage and conversion units, and a dedicated thermal control subsystem
capable of supplying 37.5 KW of electrical power continuously. Two units are

incl .ded in the I¢'C coniiguratior. and four in the growth configuration.

20
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2.2.3.7 Boom

Two booms attached to T™M's in the 10C phase provide mounting points and
two-axis orientation for the power system, radiators, and antennas. The
additional components for the grcw.th phase are mounted on the same booms.
2.2.3.8 Manipulator

An Orbiter-type RMS mounted on a standard berthing mechanism and controlled
remotely from the C/CM is used to transport massive items from place to place
on the station aid to assist the Orbiter RMS in station assembly and resupply.

One RMS is provided at I0C and three in the growth phase.

2.2.3.9 Vehicle Support Facilities

Vehicle support facilities include unpressurized hangars for servicing and
protected storage, propellant storage and transfer facilities, and equipment
and spares for checkout and maintenance. The IOC capability iﬁcludes
provisions for one OMV. 1In the growth st “ion, two OMV's and two OTV's can be

accommodated.

£.2.3.10 Satellite Service Stryucture

The satellite service structure provides structural and utilities support for
unpressurized user payloads and free flying satellites. One structure is

included at I1I0C, and a second is added in the growth phase.

2,2.4 Subsystem Distribution

The table below summarizes the location of subsystem components within the

station.

22




SUBSYSTEM COMPONENT LOCATION SUMMARY

C/CcM HM LM LOG. M BOOM
ECLSS X X X / - -
THERMAL CONTROL X X X X / X
PROPULSION/RCS X - - - - -
COMM/TRACKING X / / / / by
DATA MANAGEMENT X (x) / / / /
ELECTRICAL POWER / / / / / X
MECHANISMS X X X X X X
- ' CREW ACCOMMODATIONS (xX) X / / / -
GNC X X) - - - -

X  PRIMARY LOCATION OF MAJOR COMPONENTS
(X) BACKUP LOCATION OF MAJOR COMPONENTS
/ LOCATION OF SOME MINOR COMPONENTS

-  NO SUBSYSTEM COMPONENTS

2.2.5 Mass Properties

The estimated mass properties of the building block configuration are
summarized in the following table. Element weights include associated
subsystems. Although these estimates do not include an allowance for weight
growth, some growth can be expected to occur. This would increase the weights
and inertias given, but would not appreciably alter the relative magnitudes of

the inertias. See figure 2.2-2 for coordinate system definition.

" g,

H
i
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BUILDING BLOCK

UNIT MASS QUANTITY
LB. 10C GROWTH
c/cH 27,700 2 2
HM 51,300 1 2
SINGLE LM 27,700 2 6
DOUBLE LM 51,300 - 1
™ 11,300 4 8
LOGISTICS 27,700 1 1
POWER SYSTEM 8,050 2 4
BOOM 580 2 2
MANIPULATOR 2,000 1 3
OMV HANGAR 3,600 1 2
0TV HANGAR 7,100 - 2
OTV PROP. TANK 6,600 - 1
SATELLITE SVC. STR. 5,200 1 2
10C GROWTH
W/0 OTV PROP. W/OTV PROP.

MASS, LB 263,060 571,360 697,360
c.G., IN. X 946.5 950.2 1,020.2

Y -0.6 -0.8 -0.7

z 1,114.1 1,180.3 1,040.2
Ixx, 10° sLUG-FT? 9.316 41.063 55.925
Iyy 6.769 40.230 57.262
Izz 8.392 14.388 19.054
Ixy 0.047 0.016 0.023
Ixz ~1.001 -1.067 ~7.853
Iyz -1.291 -1.947 ~1.962
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2.2.6 Cost Overview Building Block Configuraticn

The cost of the BB configuration is $8.2 billion ia 1984 dollars at 10C. The
groundrules and assumptions on which this cost is based are discussed in
section 3.2.6.1. Figures 2.2.6-1 and 2.2.6-2 show the breakout of the $8.2
billion for the DDT4E phase and production phase, respectively. It is
immediately evident that the majority of the cost of the program is in
"overhead" costs, such as system level and program level tasks. Approximately
757 of the DDT&E costs are in this category, contrasted to approximately 25%
for hardware development. Roughly 40% of the production costs are system and

program level costs, leaving approximately 60% actual hardware production.
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2.3 Delta Concept

2.3.1 General Arrangement

In the delta concept, the functional elements of the station are mounted on a
large deployable triangular truss structure for maximum rigidity. One face of
the structure is covered by solar arrays. The other two faces support
radiators, power conditioning equipment, experiments, payloads, etc.
Pressurized modules are mounted on the truss opposite the solar arrays in two
parallel rows.

At I0C, the pressurized modules from a quadrangle at one end of the truss (see
figure 2.3-1). A tunnel is used to close the quadrangle.

The growth phase (figure 2.3-2) doubles the length of the solar array truss
and adds short extensions to the other two sides for rigidity and to support
power system radiators. Pressurized modules are added to the IOC set to fill
the edge of the truss.

Hangars are located within the triangle to use the truss as primary structure

and the radiators as part of the hangar skin.

2.3.2 Function/Operation

The delta configuration is approximately solar oriented with the Y principal
axis (figure 2.3-1) perpendicular to the orbit plane. Gravity gradient
torquas in roll and yaw are therefore nulled; pitch torque is cyclic and can
be absorbed by control moment gyros. Mass distribution is such that the Y
principal axis is approximately 20° from the Y body axis. From March to
September, the solar array is tilted toward the north to minimize the solar
angle of incidence (see figure 2.3-3). The array is oversized bty 11% to
compensate partially for angle of incidence losses. At the equinox, a

posigrade maneuver is executed (A in figure 2.3-3) to place the station in a
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transfer ellipse for nrtit makeup. This maneuver may be done in increments

over several orbits, After ccmpleting this maneuver, the station is rotatec
180° about the Z axis (B) and a second posigrade maneuver at C circularizes
the orbit at the required altitude. In March, the procedure is repeated. In
this way, ~rbit decay is made up every six months, and thrusters are needed at
only one location on the station. Contamination-sensitive sensors can thus be
located far from the exhaust

plume.

2.3.3 Elemenis
The delta comprises a number of pressurized and unpressurized

modular elements, arranged as shown in figures 2.3-1 and 2,3-2,

2.3.3.1 Command/Control Module (C/CM)

The C/CM is the primary command and operations work station. It alsc provides
crew support in the event of functional loss of the habitation module in the
I0C phase. The C/CM is arranged as illustrated in figure 2.3-4. Berthing
mechanisms are installed at both ends. Overall iength between berthing
interfaces is 264", partly to provide volume for avionics and contingency crew
accommodation and partly to maintain a standard module length for assembly
versatility. One C/CM is required at I0C; a second C/CM is added in the

growth station.

2.3.3.2 Habitation Module (HM)

The HM (figure 2.3-5) is the primary location for all crew support functions,
including food, hygiene, waste management, health maintenance, sleep, and
recreation for a crew of eight. A minimal command station provides backup

capability in case the C/CM becomes unusable. Overall length between berthing
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Figure 2.3-5b. Habitation Module 2




interfaces is 528", or twice that of the C/CM. The I0OC station includes one

HM and the growth station two.

2.3.3.3 Laboratory Module (LM)

The iL¥ provides a pressurized facility for scientific, developmental and
production activities on the station. It includes interfaces with station
utilities such as electrical power, thermal control, data management,
communications and life support. It also provides structural mounting for
interior user equipment. It is built in two sizes which are structurally
identical to the C/CM and HM respectively. This permits a late choice between
the adaptability of smaller modules and the structural efficiency and interrnal
volume of the larger module because two short LM's can be replaced in the
configuration by one long LM or vice versa. Two short LM's are provided in
the 1I0C station. Two short LM's and one long LM are added in the growth

phase.

2.3.3.4 1Interconnect Module (IM)

The IM (figure 2.3-6) serves primarily as a means of connecting station
elements at right angles without wasting valuable volume in the 14 f:.
diameter modules for side ports. The IM has five berthing ports that can be
fitted to accommodate the Shuttle Orbiter or .connect pressurized station
modules, manipulators, and other station eiements. It can also be equipped as
an airlock for two crewmen. Four IM's are required on the IOC

station and four more on the growth version.

2.3.3.5 Logistics Module

The logistics module serves as a carrier for supplies and equipment brought

from earth and for products and waste material to be returned. It is
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structurally similar to the C/CM with a single berthing port on one end and a

rack for tanks and other external stores on the other end.

2.3.3.6 Electrical Power Unit

The electrical power generation subsystem is built in mcdular form to
facilitate installation. Each uait consists of solar array packages, energy
storage and conversion units, and a dedicated thermal control subsystem
capable of supplying 25 KW of electrical power continucusly. Three units are

included in the IOC configuration and six in the growth configuration.

2.3.3.7 Tunnel
An 80" diameter tunnel is used to provide a closed loop of pressurized modules
at I0C. A second tunnel is added in the growth phase to enhance internal

traffic flow.

2.3.3.8 Truss
A deployatle tetrahedral planar truss is used as a structural foundation for
the station. It provides mounting for pressurized modules, external

subsystems, support service facilities, and payloads.

2.3.3.9 Manipulator

An Orbiter-type RMS mounted or a standard berthing mechanism, which can be
truss or module attached and controlled remotely from the C/CM, is used to
transport massive items from place to place on the station and to assist the
Orbiter RMS in station assembly and resupply.

One RMS is provided at I0C and three !n the growth phase.

2.3.3.10 Vehicle Support Facilities

Vehicle support facilities include unpressurized hangars for servicing and

protected storage, propellant storage ani transfer facilities, and equipment
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and spares for checkout and maintenance. The IOC capability includes

provisions for one OMV. 1In the growth station, two OMV's and two OTV's can be

accommnodated.

2.3.4 Subsystem Distribution

The table below summarizes the location of subsystem components within the

station.
SUBSYSTEM COMPONENT LOCATION SUMMARY
C/CM HM LM LOG. M TRUSS

ECLSS X X X / - -
THERMAL CONTROL X X X X / X
PROPULSION/RCS X - - - - -
COMM/TRACKING X / / / / X
DATA MANAGEMENT x (X) / / / /
ELECTRICAL POWER / / / / / X
MECHANISMS X X X X X X
CREW ACCOMMODATIONS (X) X / / / -
GNC X (X) - - - -

X  PRIMARY LOCATION OF MAJOR COMPONENTS
(X) BACKUP LOCATION OF MAJOR COMPONENTS
/ LOCATIC.s OF SOME MINOR COMPONENTS

- NO SUBSYSTEM COMPONENTS

2.3.5 Mass Properties

The estimated mass properties of the Delta configuration are summarized in the

following table. Element weights include associated subsystems.

Although

these estimates do not include an allowance for weight growth, some growth can

be expected to occur. This would increase the weights and inertias given, but

would not appreciably alter the relative magnitudes of the inertias. See

figure 2.3-Z for coordinate system definition.
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DELTA

UNIT MASS QUANTITY
LB. 10C GROWTH
C/CM 27,700 T 1 i ;—--
HM 51,300 1 2
SINGLE LM 27,700 2 4
DOUBLE LM 51,300 - 1
M 10,000 4 8
TUNNEL 1,090 1 2
LOGISTICS 27,700 1 1
POWER SYSTEM 5,590 3 6
TRUSS - I0C 10,110 1 -
GROWTH 15,340 - 1
MANIPULATOR 2,000 1 3
OMV HANGAR 4,320 1 1
OTV HANGAR 8,520 - 1
OTV PROP. TANK 6,600 - 1
SATELLITE SVC. STR. 2,080 1 2
10C GROWTH
W/0 OTV PROP. W/0TV PROP.
MASS, LB ;;8,470 508,460 634,460
c.G., IN. X 1,165.8 1,679.8 1,723.9
Y -62.8 -46.1 -36.9
yA 573.1 554.7 565.7
1xx, 10° sLuG-pr? 13.574 27.370 27.563
Iyy 14.090 59.301 60.977
Izz 8.577 48.167 49.822
Ixy -0.915 -1.407 -1.184
Ixz 3.029 7.682 7.949
Iyz -2.185 -4.436 -4,381
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2.3.6 Cost Overview Delta Configuration

The cost for the Delta configuration in $8 billjon in 1984 at 10C. The
groundrules and assumptions upon which this cost estimate is made is discussed
in section 3.3.6.1. The cost is virtually the same as the BB configuration.
Therefore, the differences in the concepts were offsetting in terms of costs
for all practical purposes. The costs of the truss and tunnel lements
(additive for this alternative) were offset by the deletion of the solar boom
equipment, one C/C module, and the satellite support system.

Figures 2.3.6-1 and 2.3.6-2 present the breakout of the $8 billion for the
DDT&E phase and production phase, respectively. It is immediately evident
that the majority cost of the program is in "overhead" costs, such as system
level and program lavel tasks. Approximately 75% of the DDT&E cost are in
this category, contrasted to approximately 25% for hardware development.
Roughly 40% of the production costs are system and program level :rsts,

leaving approximately 60% for actual hardware production.
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2.4 Big "T" Configuration

2.4.1 General Arrangement

The "T" concept clusters the pressurized modules and most operational support
facilities at the lcwer end of a vertical planar truss. Solar arrays,
antennas and astronomical sensors are mounted on a horizontal planar truss at
the upper end of the vertical truss. The IOC configuration, shown in figure
2.4-1, includes the complete vertical truss and half of the solar array truss.
The presisurized modules are grouped at one corner in a quadrangular
arrangenent.

In the growth configuration, the other half of the array truss is added at the
top of the vertical truss. The additional pressurized modules £ill the bottom
edge of the vertical truss.

Hangars and other operational support facilities are mounted above the
pressurized modules, as are the thermal control system radiators. Radiators

for the electrical power system are located under the solar array truss.

2.4.2 Function/Operation

The "T" configuration is maintained in an earth-fixed attitude with the two
trusses parallel to the velocity vector (figure 2.4-3). This orientation
minimizes drag and is gravity gradient stable.

The solar array truss is rotated about the velocity vector up to 17° from the
horizontal to maintain at least nominal power output as Beta varies up to 52°
(see figure 2.4-4).

Several Orbiter berthing ports are available. These and others are also
available for installation of temporary modules and payloads. Space is also
available on the truss for unpressurized payload attachment.

Orbit makeup is accomplished by thrusters mounted on the IOC C/C module.
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Contamination-sensitive instruments can therefore be mounted on the forward

edge of the array truss for a good view factor and optimum environment. Earth

sensors can be located in the pressurized modules if desired for calibration

purposes.

2.4,3 Elements
The "T" concept comprises a number of pressurized and unpressurized

modular elements, arranged as shown in figures 2.4-1 and 2.4-2.

2.4.3.1 Command/Control Module (C/cM)

The C/CM is the Primary command and operations work station, It also provides

crew support in the event of functional loss of the habitation module in the

ICC phase. The C/CM is arranged as illustrated in figure 2.4-5, Berthing

mechanisms are installed at both ends. Overall length between berthing

interfaces is 264", partly to previde volume for avionics and contingency crew
y

accommodation and partly to maintain a standard module length for assembly

versatility. One C/CM is required at 10C; a second C/CM is added in the

growth station.

2.4,3.2 Habitation Module (HM)

The HM (figure 2.4-6) is the primary location ror all crew support functions,

including food, hygiene, waste management, health maintenance, sleep. and

recreation for a crew of eight. A minimal command station provides backup

capability in case the C/CM becomes unusable. Overall length between berthing

interfaces is 528", or twice that of the C/CM. The I0C station includes one

HM and the growth station two.

2.4.3,3 Laboratory Module (LM)

The LM provides a pressurized facility for scientific, developmental and
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produrtion activities on the station. It includes interfaces with station
utilities such as electrical power, thermal control, data management,
communications and life support. It also provides structural mounting for
interior user equipment. It is built in two sizes which are structural'y
identical to the C/CM and HM respectively. This permits a late choice between
the adaptability of smaller modules and the structural efficiency and internal
volume of the larger module because two short LM's can be replaced in the
configuration by one long LM or vice versa. Two short LM's are provided in

the I0C station. Four short LM's and one long LM are added in the growth

phase.

2.4.3.4 Interconnect Module (IM)

The IM (figure 2.4-7) serves primarily as a means of connecting station
elements at right angles without wasting valuable volume in the 14 ft.
diameter modules for side ports. The IM has six orthogonal berthing ports
that can be fitted to accommodate the Shuttle Orbiter or connect pressurized
station modules, manipulators, and other station elements., It cun also be
equipped as an airlock for two crewmen. Four IM's are required or. the 10C

station and four more on the growth version.

2.4.3.5 Logistics Module

The logistics module serves as a carrier for supplies and equipment brought
from earth and for products and waste material to be returned. It is
structurally similar to the C/CM with a single berthing port on one end and a

rack for tanks and other external stores on the other end.

2.4.3.6 Electrical Power Unit

The electrical power generation subsystem is built in modular form to

facilitate installation. Each unit consists of solar array packages, energy
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storage and conversion units, and a dedicated thermal control subsystem

capable of supplying 25 KW of electrical power continuously. Three units are

included in the IOC configuration and six in the growth configuration.

2.4,3.7 Tunnel

Tunnels 80" in diameter are used to provide additional egress paths from the
pressurized modules prior to full growth buildup and to improve internal
traffic flow. Ome tunnel is installed at IOC and a second during the growth

phase.

2.4,3.8 Truss

Deployable tetrahedral planar trusses form the structural framework of the
station. They provide mounting for pressurized modules, external subsystems,
support and service faciliries and payloads. The entire truss is enplaced

during IOC buildup except for half of the solar array truss.

2.4.3.9 Manipulator

An Orbiter-type RMS mounted on a standard berthing mechanism, which can be
truss or module attached, and controlled remotely from the C/CM is used to
transport massive items from place to place on the station and to assist the
Orbiter RMS in station assembly and resupply.

One RMS is provided at ICC and three in the growth phase.

2.4.3.10 Vehicle Support Facilities

Vehicle support facilities include unpressurized hangars for servicing and
protected storage, propellant storage and transfer facilities, and equipment
and spares for checkout and maintenance. The IOC capability includes
previsions for one OMV. In the growth station, two OMV's and two 0TV's can be

accommodated.
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2.4.4 Subsystem Distribution

The table below summarizes the location of subsystem components within the

station.
SUBSYSTEM COMPONENT LOCATION SUMMARY
C/CM HM LM LOG. IM TRUSS

ECLSS X X X / -
THERMAL CONTROL X X X X /
PROPULSION/RCS X - - - -
COMM/TRACKING X / / / /
DATA MANAGEMENT x (X) / / /
ELECTRICAL POWER / / / / /
MECHANISMS X X X X X
CREW ACCOMMODATIONS (X) X / / /
GNC X (X) - - -

X  PRIMARY LOCATION OF MAJOR COMPONENTS
(X) BACKUP LOCATION OF MAJOR COMPONENTS
/ LOCATION OF SOME MINOR COMPONENTS

- NO SUBSYSTEM COMPONENTS

2.4.5 Mass Properties

The estimated mass propertier of the "T" configuration are summarized in the
following table. Element weights include associated subeystems.
these estimates do not include an allowance for weight
be expected to occur. This would increase the weights

would not appreciably alter the relative magnitudes of

figure 2.4-2 for coordinate system definition.

growth, some growth can

and inertias given, but

the inertics,

Although

See




"T "

UNIT MASS QUANTITY
L. 10C GROWTH
crew 27,700 1 2
HM 51,300 1 2
SINGLE LM 27,700 2 4
DOUBLE LM 51,300 - 1
™ 11,300 4 8
TUNNEL 1,090 1 2
LOGISTICS 27,700 1 1
POWER SYSTEM 11,010 3 6
TRUSS - T0C 8,770 1 -
GROWTH 14,320 - 1
MANIPULATOR 2,000 1 3
OMV HANGAR 3,600 1 1
OTV LANGAR 7,100 - 2
OTV PROP. TANK 6,600 - 1
SATELLITE SVC. STR. 2,080 1 2
T0C GROWTH
W/0 OTV PROP. W/OTV PROP.
MASS, LB. 257,870 555,320 681,320
C.6., IN. X 1,147.9 1,608.1 1,605.7
Y -17.1 -7.9 -6.5
z 769.3 772.2 893.2
Ixx, 10° sLUG-FT? 46.006 96.768 106.672
1yy 47.824 126 .427 136.334
1zz 9.649 46.160 46 .246
Ixy ~0.324 0.063 0.060
Ixz -1.167 0.736 0.545
Iyz 0.139 0.133 0.249
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2.4,6 Cost Overview - Big "T" Configuration

The big "T" configuration has been costed at $8.7 billion in 1984 at 10C.
This is the most costly of the three alternative configurations. This is
primarily due to the additional truss structure, additional solar array
requirements, and more fuel cells. However, as a comparison of the costs for
all three configurations would indicated, the difference is relatively small
(less than 10%).

Figures 2.4.6-1 and 2.4.6-2 present the breakout of the $8.7 billion for the
DD&TE phase and production phase, respectively. It is immediately evident
that the majority of the cost of the program is in "overhead" costs, such as
system level and program level tasks. Approximately 75% of the DDT&E costs

are in this category, contrasted to approximatelv 25% for hardware

development. Roughly 40% of the production costs are system and program level

costs, leaving approximately 60% for actual hardware production.

64




65

%9°22=19€17
. AT WOdd

%9'258=591€
AT SAS

JNAOW A AdIWWNS 1SOD 31dd
NOILBAINOIANOD L 914

1-9°v*2 "9I4

- e ,‘ sppreet v td .M‘i.?.i é_.aﬁﬂo,_ﬂ..aM;x.‘ -\ . | . NN .,,‘...:.,;,?',}?9, # i e



66

%L=281
TRIUIND B d
%9°22-86S
Z1'8=p12 AT WO
aow
ZE Q1=2.2
aou
76°81=10S
W SAS
%Z1°01=692 %Z1°E=8
aou -3~ aouW 907
ZE"8=6
TT3NNNL
ZS5°0=v1
79 °81=E6p SIINTH
SSM

INA0W AH AMWNNS 1S0D AOdd
NOILHINOIINOD L 918

¢=9°v'2 "914

iy agrenpohes L o T YT AT BETEE ' ' T T A T T T



—

o
fow
&

DY - - g

3.0 CONCEPT FUNCTIONS DZSCRIPTION AND EVALUATION

3.1 Introduction

In this study, the desirable features or evaluation criteria will be
identified and discussed, the means used to meet the requirements, and criteria
described and judgments supported by qualitative and quantitative data (when
possible) will be made.

The criteria or desirable features were defined in terms of user
accommodations, system engineering, operations, safety, programmic features,
and technology availability. In concer* with the CDG's work on the subject,
the criteria in the user accommodation and system engineering areas were
subdivided into view factors, access and clearance, arrangement versatility,
dynamics and control, and assembly and growth. An attempt was made to include
not only the basis for quantifying the configurations performance or required
functions such as orbit maintenance and attitude control, but also for
evaluating those feature: which may be desirable such as compatability with
tethers for science.

Except as dictated by configuration differences, the same basic subsystem
concepts were applied to all three Space Station configurations. This
practice extended to the size, interior provisions, and arrangements of
pressurized modules, such that differences in costs, performance, and crew and
user evaluations should be dependent primarily in the differences in the
configuration concepts. Some discussion of alternative subsystem types, and
the rationale for selection of subsystems, are contained omn Section 4 of the
report.

£lthough weighting has not been assigned to these criteria, such weighting
will be necessary to obtain a quantitative overall evaluation. This step was

not considered necessary at this stage of the concept development.
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3.2 Building Block Configuration - Evaluation

3,.2.1 User Accommodations Evaluation

3.2.1.1 Viewing

The building block Space Station configuration will provide for constant earth
viewing at a 28.5° inclination. Both pressurized and unpressurized areas are
provided for sensors. The pressurized areas would be for the earth sensors
so that senscr development could be possible. The unpressurized areas are for
sclar and stellar viewing and the respective sensors are located in the
surrogate payload bay. This location does offer viewing flexibility, insofar
as stellar viewing frequency and oriertation flexibility for both solar and
stellar. However, additional study needs to be made to determine possible
contamination due to payload bay location. It is possible to accommodate

simultaneous earth, solar, and stellar viewing with this configuration.

3.2.1.2 Power
The power supplied to the user at IOC will be 60 KW continuous and at growth

it will be 120 KW continnous.

3.2.1.3 Pressurized Volume

The pressurized volume at I0C provided to the user is two 22 foot modules.

For growth, a total of four 22 foot modules and one 44 foot module are provided.
The 44 foot module offers facility versatility in the growth phase

and the two 22 foot modules offer flexibility at I0C. However, this is an

issue; see Section 5.0.
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3.2.1.4 Crew Time

A considerable amount of the crew's time has been allocated to the user as
shown in sections 3.2.4, 3.3.4, and 3.4.4, each section pertaining tu the
building block configuration, delta truss configuration, and "T" configuration

respectively,

3.2.1.5 External Attachments

A pallet attachment for the user is possible with this configuration.

3.2.1.6 Microgravity

The acceleration level at the modules that require low gravitational levels

are assumed to be 10-4 g nominal. However, the effect of the module's

distance from the station's c.g. has not been determined and needs to be

considered for each configuration.

3.2.2 Crew Accommodations Evaluation

Crew
accommodations in the module are the WCS, a minimal galley, stored focd for
eight people for 22 days and a hygiene station. The accommodations are
adequate.

If the manipulator is controlled from this module, the limited visibility will
require additional windows or video equipment and Perhaps at times, EVA
crewperson to guide the manipulator.

The habitability module Provides sleeping quarters, personal hygiene, medical
facilities, and a galley/wardroom. The Private sleeping quarter vélume is
adequate for sleeping, dressing, video training, and entertainment, grooming,

and associated activities. It ig generally preferable to have the sleeping




quarters located away from noisy equipment which would disturb a sleeping crew
person. The habitability module does not entirely succeed in doing this, for
adjacent to the sleeping quarters is the Personal Hygiene and Medical
Facility. The Personal Hygiene area contains two combinations
shower/urinal/handwash facilities and a Waste Control System (WCS). The
Medical Facility ceontains limited medical equipment and supplies and the
physical conditioning equipment. To make their location in the habitability
module acceptable, the WCS and health maintenance equipment poise levels must
be sufficiently low to avoid disturbing a sleeping crewperson or special
accoustical isolation must be provided. The Personal Hygiene Facility coupled
with a WCS in the Command and Control Module is adequate for eight
crewpersons. The galley and wardroom provide facilities for use by eight
crewpersons simultaneously which is adequate. The wardroom area should
provide a capability for group training or entertainment.

For growth, a second similar habitability module is added to the staticn and
the medical/physical conditioning equipment is moved to the Life Sciences Lab.
The second habitability module is adequate for the increase in crew.

The habitability module is designed to permit unimpeded passage through the
module. The module maintains a consistent heads-up orientation which is
desirable. The floor and ceiling are offset from the module walls to allow
utility equipment location. This combination renders it difficult to locate
windows in these areas and consequently there are none. (It would be

desirable to have windows which could view in all directions.)

3.2.3 Engineering

3.2.3.1 Assembly and Growth Evaluation

A preliminary launch-by-launch buildup sequence has been developed and is
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summarized in figure 3.2.3,1-1. This sequence is based on Orbiter payload bay

packaging that is plausible but optimistic. It is assumed that an Orbiter
docking module is carried on all flights. Where possiule, all elements are
installed initially in their final locations. Exceptions are indicated in
figure 3.2.3.1-1 by an arrow from the flight that launches the element *o the
flight on which it is moved to its final location. Completion of IOC and
growth capabilities is denoted by heavy vertical lines.

Figure 3.2.3.1-2 illustrates the assumed packaging ia the payload bay for each

launch required for 10C.

3.2.3.1.1 User Accommodation: Assembly and Growth

Preliminary invest!igation of the buildup process makes clear that the compact
arrangemert of the building block configuration leaves little latitude for
alternate element locations. When two Orbiter berthing locations are left
vpen, few useadble ports remain for future, presently unidentified
applications. Within the bounds of the building block concepts, user
accommodations might be exchanged for different ones with little difficulty.

Providing additional facilities would be less easy.

3.2.3.1.2 Systems Engineering: Assembly and Growth

It is assumed that work requiring a low-gravity environment will be suspended
during any station assembly orerations, and therefore that this is not a
discriminator. However, large actitude changes can be anticipated when an
Orbiter is berthed to the station; orientation-sensitive work will suffer
accordingly. One satellite service structure must be relocated during buildup
and its functiun wouvld also be temporarily suspended at that time.

Transition efficiency also suffers from the relocations required. The IM

relocation could be eliminated but a less economical launch packaging scheme




would probably be needed. The service structure relocation cannot readily be

avoided.

There are no elements in the early phase that are discarded in later stages.
Assembly requires the full capability of the Orbiter RMS. A seccnd RMS or a
handling and positioning aid will be needed in some steps of buildup. EVA can
be limited to service structure and hangar assembly for I0C, but will be
required for power system installation in the growth phase. With suitable
detail design, disasembly can be handled similarly. Note that the RMS reach
analysis in section 3.2.4.2 assumes a large manipulator on the station at an
early point in the buildup in lieu of a handling and positioning aid.

Once the station is built up, any pressurized module will be very difficult to
remove and replace. In most cases, partial disassembly will be necessary.

The structural characteristics of the station will be degraded, to an extent
not yet determined, until the module is replaced.

Two ports are available at all times for Orbiter berthing, as specified in the
system requirements. Two additional ports can be used by the Orbiter but
offloading of payloads would be restricted, if possible at all. Tweive other
ports could be used by temporary payloads but the rotating radiators will

severely limit the length of a payload at most of these ports.

3.2.3.1.3 Programmatics: Assembly and Growth

In the buildup sequence, IOC is reached after six launches. Redundancy of
essential systems is achieved after three launches and the station could be
permanently manned at that time. Lack of a logistics module would limit crew
size to that supportable by consumables stored in the C/CM and HM, and absence
of a LM would constrain the useful work that could be done. The latter
constraint is eliminated on the fourth launch. Five launches provide full I0C

except for OMV support and an on-board manipulator.
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Total deployment of the growth capability requires 15 launches in the scenario

assumed. If the OMV and OTV hang .rs can be packaged compactly enough, it may be
possible to reduce this number by one launch. Another launch might be saved if
tunnels were substituted for the two LM's in excess of the specified requirements.

Thus, it may be possible to achieve a minimum growth station in 13 launches not

counting resupply flights.

3.2.3.1.4 Safety: Assembly and Growth

The compact configuration of the building block makes it impossible to achieve
large separations between inhabited areas and hazardous areas such as the 0TV
propellant storage facility. In the reference configuration, the propellant tank
is directly adjacent to a LM and is only 50 feet from an HM. By a major module
rearrangement, the distance to the HM could be increased to 90 feet. Isolation of
a hazardous conditions, such as a spill of a toxic substaace, can be done with
little difficulty. Since there are two routes to each modules, any one can be

isolated without significant disruption of other activities.

3.2.3.2 Structural Dynamics and Control Evaluation

3.2.3.2.1 Building Block Configuration Flight Mode

Tae Building Block configuration (BB) has been designed to fly with its body axes
basically aligned with the LVLH axes (local vertical local horizontal), see figure
3.2.3-1. In this flight mode, the BB configuration is pitched in the orbit plane
to achieve a Torque Equilibrium Attitude (TEA) condition. Since the aerodynamic
and gravity gradient torque vary as a function of solar array position, iteration
to an average TEA can be quite lengthly.

The BB configuration is rolled to Place the average principal axes

perpendicular to the orbit plane. Next, the BB configuration is pitched

slightly in the orbit plane until an average TEA is obtained. TEA 1is




achieved when the pitch plane gravity gradient torque is cyclic due to the solar
array being held solar inertial while the BB configuration modules are held in a
modified LVLH attitute. A final yaw adjustment is made to null the secular
torques. Control moment ghyro”s (GMG“s) pull the resulting cyclic torques to

mairtain the flight attitude.

3.2.3.2.2 On-Orbit Disturbancews - Gravity Gradient

Cperacion in low earth orbit (270 NM) provides exposure to significant gravity
gradient torque disturbances. These are on the order of two foot pounds. While
relatively insignificantly from a controllability point of view, the extreme time

span of the Spzce Station mission makes these significant drives for "cost-of-

ownership,” unless the steps are taken to minimize their influence.
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Figure 3.2.3.2-1
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3.2.3.2.3 Aerodynamic Torque Disturbance

In addition to gravity gradient torques, the aerodynamic torques can produce
secular momentum accumulation. Detailed simulation of the aerodynamic
disturbance for the BB configuration has been conducted. However, the
asymmetric effect of the diurnal atmosphere variation has been neglected for
this analysis. The BB configuration has solar inertial fixed panels which
produce significant drag forces. However, the full up BB-IOC and GROWTH
configurations have small pitch plane torque moment arms, Thus a small pitch

plane attitude alignment change cen be made to fly an average TEA.

3.2.3.2.4 Mass Properties Management

A mass properties management scheme must be employed in the Space Station
design in order to enhance the flight performance. The mass properties for

the BB configuration are shown below:

10C GROWTH

1XXP 1.44 E 7 2.1 E7 Slug-ft?
I7P 93 E 7 6.8 E7 Slug-ft?
12ZP 1.62 E 7 7.0 E 7 Slug-ft?
0 * ~4.2° -25.6°
X
0 * -11.7° -10.25°
y
0 * -29.2° -2.0°
zZ
R 89.6 92 ft
X
R -.25 -4 ft
y
R -5.4 2.3 £t
z

211. 3K 756.8K

* Euler angles; rotate from generated axes to principal axes with rotation

order 0 , 0 , and O . R_, R. R, cg-vector position, IXXP, IYYP, I2ZP
%’ Uy z x’ 'y, 2

principal inertias.
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3.2.3.2.5 Momentum Storage Requirements

Momentum storage requirements are based upon the peak cyclic momentum
variations, and the attitude coatrol system philosophy regarding the amouat of
reliance on the CMG's for attitude maneuvers and absorption of large impulsive
disturbances (i.e, mix between CMG torque impulse and RCS torque impulse),
Peak cyclic momentum storage for the BB configuration due to aerodynamics
torques and gravity gradient torques are presented below. Due to the time
available for this study, the momentum storage equipment was sized only for
the nominal flight conditions involving attitude hold.

PEAK CYCLIC GRAVITY GRADIENT MOMENTUM (FT-LB-SEC)

FLIGHT _BB _
MODE 10C GROWTH
EARTH FIXED 9,000 12,500

3.2.3.2.6 Orbital Maintenance Impulse Requirements

Orbital maintenance impulse was determined using the NASA neutral atmosphere
(SP-8021) density at 270 NM and average aerodyaamic properties to compute the
drag impulse. The NASA neutral atmosphere is considered to be the worst
long-term atmcsphere applicable to a 90-day resupply cycle. Short term
maximum ccnditions should be used for RCS engine magnitude sizing,

The disturbance simulation used a dynamic nressure of .99905E-6 lb/ftz.
summary results for the BB configuration are shown below.

DRAG IMPULSE PER OKBIT
‘LB-SEC/ORBIT

Configuration BB Configuration
Flight Mode I0C Growth
Earth Fixed 240 480

Using the data shown above, worst case resupply propellant for altitude

maintenance was calculated and shown below. This assumes that the orbit is
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not allowed to deviate from 270 NM,

90-DAY RESUPPLY PROPELLANT FOR ALTITUDE MAINTENANCE FOR 270 NM
LBS - (NORMALIZED TO: ISP = 220 SEC.)

Configuration BB Configuration
Flight Mode 10C Growth
Earth Fixes 1,500 3,000

For the earth fixed attitude mode, the BB configuration suffers a distinct
disadvantage due to the fact that the large solar panel areas are not always

"feathered."

3.2.3.2.7 RCS Firing Frequency

Detailed flight dynamic simulations of the BB configuration show that the
configuration can be trimmed so that there is no secular torque momentum
acculation per orbit. Thus, no RCS firings are required for CMG desaturation.
The BB configuration can achieve a minimum RCS attitude maintenance firing
frequency of once every 90 days chosen to coincide with STS resupply. This
will be particularly attractive to long term low "g" scientific experiments

and manufacturing processes. Attitude loss will be less than seven miles in

9C-days.

3.2.3.2.8 Result of BB-10C On-Orbit Flight Dynamics

The results of the on-orbit flight dynamics for the BB-IOC configuration in

the LVLH flight mode are shown in figure 3.2.3.2-3 through 3.2.3.2-6. Figure
3.2.3.2-2 shows the torque impulse history of the BB-IOC configuration for one
orbit. The torque impulse curve shows a slight TEA mis-trim condition of

5,000 ft-lbs-sec per orbit. Additional iterations can be made to null the TEA
imbalance. The cyclic momentum storage requirement will not change

significantly with further iterations and is approximately 9,000 ft-lbs-sec.
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The aerodynamic drag impulse history shown in figure 3.2.3.2-3 is 240 1lbs-
secf/orbit. Figure 3.2.3.2-4 shows the resultant drag force history which peak at
.054 1bs. Figure 3.2.3.2-5 shows the gravity gradient torque history whose cyclic
torque peaks at two foot lbs. Figure 3.2.3.2-6 shows the aerodynamic torque

history which has a peak pitch torque of .13 ft-1bs.

3.2.3.2.9 Results of BB Configuration Growth On-Orbit Flight Dynamics

The results of the on-orbit flight dynamic for the BB-Growth configuration in the
LVLH flight mode are shown in figure 3.2.3.2-7 through 3.2.3.2-10. Figure 3.2.3.2-
7 shows the torque impulse history of the BB-Growth configuration for one orbit.
The torque impulse curve shows a slight TEA mistrim conditiocn of 2,000 ft-1lbs-sec
per orbit. Additional iterations can be made to null the TEA imbalance. The

cyclic momentum storage requirement will not change significantly with further

iterations and is approximately 9,000 ft-1lbs-sec. The peak storage requirements of

12,500 ft-1bs-sec occurs when the solar arrays are tilted 45°. The aerodynamic
drag impulse history shown in figure 3.2.3.2-8 is 5,000 Ibs-sec/orbit. Figure
3.2.3.2-9 shows the resultant drag force history which peak at .13 lbs. Figure
3.2.3.2-10 shows the gravity gradient torque bistory whose cyclic torque peaks at

.17 ft-los. Figure 3.2.3.2-8 shows the aerodynamic torque history which has a peak

pitch torque of .75 ft-1lbs.

3.2.3.2.10 Structural Dynamics and Control

The flexibility of a Space Station is analyzed because of its contribution to

internal and module interface loads. Also, excessive dynamic accelerations,
velocities, and displacements can degrade the performance of sensitive instruments
(or experiments) and complicate vehicle maneuvers. This section of the report
summarizes the structural dynamics of the BB concept and the effects this

flexibility has on the flight control system.
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The BB configuration was found tc have a low natural frequency with array bending
(0.07 Hz). An interesting dynamic response results from the asymmetry of the array
as attached to the station. This asymmetry creates an additional low frequency
rotation about the array axis which contributes to the already complex control
strategy necessary for this configuration.

A single axis rigid body control analysis was performed for the BB configuration
that utilized the maximum moment of inertia in the vehicle dynamics model, figure
3.2.3.2-11. A second order model was assumed for the CMG and angular rate
dynamics. The resulting closed loop system has nearly critically damped CMG/rate
poles near the open loop values. A frequency response (Bode plot) was made to
determine the control system pass band. The BB configuration controller was found
to have bandpass to 0.6 Hz. This value is higher than the other configurations and
is attributable to the rotational inertia of this system. The higher bandpass
implies a faster time response for maneuvers.

Comparing the structural flex spectrum with the controller bandpass reveals
considerable overlap of the dynamics for ¢+ & subsystem. The BB configuration

has a first bending mode at 0.07 Hz and i. .llowed by seven additional mode:

that reside inside the controller bandpass. (The mode shapes that reside in

the controller bandpass are included in figures 3.2.3.2-12

through 3.2.3.2-19). The overlap in frequency response of these systems dictate
the use of sophisicated control methods. Several approaches to this control

problem have been identified. Distributed vibrationm control, OEX DAP
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Figure 3.2.3.2-13 Flex Mode Within Control System Passband
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Figure 3.2.3.2-18 Flex Mode Within Control System Passband
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(experimental Orbiter autopilot), and the frequency shaping autopilot are

among the most attractive solutions.

The structural dynamics of the BB configuration during intermediate buildup
stages was not analyzed at this time. The various stages will produce
significantly different results from the analysis of the completed version.
Depending on the buildup scenario of the BB configuration, the dynamics of

this configuration will change throughout construction and be dramatically

influenced by future module placements,

3.2.3.2.11 Summary of On-Orbit Flight Jynamics

The flight dyramics of the BB configuraction Fas been studied in d=tail for the

earth fixed (LVLH) attitude hold. Usinz mass and TEA trim objectives the

momentum accumulation can be reduced to zero. Propellant resupply weight of

up to 3,000 pounds for orbit maintenance does not seem to be a critical item.
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3.2.3.3 Communications and Tracking Evaluation

The communication subsystem consists of hardware required to establish
communication links between the Space Station and various vehicles. Antenna

requirements “or the subsystem are essentially the sum total of those

requirements developed by considering each link sepavately. In this

subsection, we will develop antenna specifications for the Building Block

configuration by sequentially describing each operating link. Informat.on on

RF coverage, number of required antennas, type, makeup, and size of these 1

antennas, and their estimated locations on the Space Station structure are

given. Also, the ease of procurement or development of such antennas is

discussed. The antenna design selected for this configuration to meet each

required link coverage was based on studies that have been dore to date.

further study and evaluation could dictate alternative options that might be
more advantageous based on numbers of antennas required and development risks.

A summary of the antenna requirements for the building block configuration is

given in table 3.2.3.3-1. The antenna locations for the IOC and growth
Building Block configuration is shown in figures 2.2-! and 2.2-2.

a. Space Shuttle Orbiter (SS0O) link - This is an S-band link that

supports tvo-way communication between the Space Station and the Space Shuttle

Orbiter. Only one SSO is supported in IOC and two SSO's are supported in the
growth version. The coverage required is limited to the hemisphere below the

Space Station and extends to about 50 km in most directions except in a small

sector directly behind the Space Station where it extends all the way to 2000

km.
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The link is to be served with one medium gain (30 dB) phased array

antenna made up of about 500 elements and measuring about 10 feet in diameter.
The optimum location for such an antenna is somewhere on the bottom portion of
the Space Station in such a way that the lower hemisphere is visible and

unobstructed by Space Station structure elemencts. One choice would be a

semi-spherical conformal array mounted on the right solar array boom.
Procurement of this antenna represents routine design and

development effort if the array is passive (electronics separate from antenna

elements). However, some risk is introduced :n the development if the array

is active with monolithic design (electronics combined with the antenna

elements in one package).

b. Multiple access (MA) 1ink - This is a K-band UNK that supports
two-way communication between the Space Station and the EMU, FF, and OMV

vehicles. The coverage is divided into two parts. The far range (to 2000 kn)

coverage is 2 20° conical sector centered about the velocity vector in the

forward and aft directions. For short range, the coverage is 4 pi -

steradians to about 400 km.

Two high gain (41 dB) multi-beam phased array antennas made up of

about 16,000 elements and measuring about 28 inches in diameter each will

serve the far range sectors. These antennas must be mounted on the Space

Station in such a way that their broadside direction is along the flight path,

On this configuration, they are located one on the side of the habitat module

and the other on the side of the lab module.

The above specification for the two high gain antennas assumed an
operating frequency in the Ka ~ band at about 28 GHz. There will be some
amount of risk associated with the development of such a large array antenna

(16,000 elements) in the passive mode. The risk becomes high if the array
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design is active and monolithic. The design difficulty can be reduced
considerably by moving to a lower ifrequency like Ku-band where an array size
of about 1,000 elements will be sufficient due to lower antenna gain (30 dB)
and higher antenna efficiency.

An additional conformal antenna is needed to complete the spherical
coverage required for short range. This antenna is a medium gain (27 DB at
Ka-band) multibeam phased array made up of 1100 elements. It has an
omnidirectional pattern in the elevation plane and mounts as a wrap-around the
left solar panel boom.

Procurement of the latter antenna represents routine development
effort if the array is passive and minimal risk if the array is active and
monalithic irrespective of whether the design frequency is in the Ka or Ku
bands.

c. Tracking and Data Relay Satellite (TDRS) link - This is a dual

S/Ku-band link that supports two-way communication between the Space Station
and the TDRS satellite. The ccverage required is hemispherical in the
elevation plane and forms an 80° sector in the azimuth plane.

The link is to be served with a dual-feed, dual-frequency
mechanically steerable parabolic reflector of nine feet diameter. This
antenna must be located on the topside of the Space Station in such a way that
the upper hemisphere is visible. On this configuration, it is located on the
right solar panel boom.

Procurement of this antenna is subject to a medium level of risk
arising from the adaptation of the two feed systems to the mechanically

steerable parabolic reflector.
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d. TV links to FF's and OMV's - These are independent Ku-band links

relaying digital TV signals from the FF's and OMV's back to the Space Station.
Two links are needed in the IOC stage increasing to six links in the growth
stage. The coverage on each link will be a 20° cone out to 2,006 km for far

range coverage and a hemisphere below the station extending 50 km.

Each link can best be served by high gain conformal phased arrays to
obtain a spherical coverage with minimum number of antennas. Each array will
have a diameter of about four feet. On this configuration, one spherically
conformal array per link would be used in IOC and mounted on the solar panel
boom while in growth a new link would require two arrays with one mounted on
the top user module and the other on the bottom user module.

The antenna arrays for the TV links represent high risk development
items due to the large number of elements that would be involved in the
design.

e. Orbital Transfer Vehicle (OTV) link - This is a K-band 1link

supporting two-way communication with the OTV vehicle in the growth
configuration only. The coverage is a full sphere with a maximum radius of
100 km.

The link can be served by a pair of medium gain phased array
antennas each covering one hemisphere. The size of each array is 400 elements
at Ka-band frequency and measures about five inches in diameter. The
placement of these antennas on the Space Station is as follows: one antenna
is located on the top surrogate payload bay and the other on the bottom
surrogate payload bay.

The development of the array pair presents no risk if the array is

passive. Minimum risk resr! - - the array is active.
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f. Tracking Links

Four links will be used to provide Space Station position and attitude

information, and to provide relative position and velocity information on
other Space Colony vehicles ‘and objects within specified volumes of concern.
The Global Positioning System (GPS) Satellite Constellation Link is an L-band
receive-only navigation and tracking link. The Space Station GPS antenna must
be able to receive code tracking information from a group of four satellites
simultaneously. The antenna coverage concists of a 160° cone centered about
the Space Station local vertical.

The link would be satisfactoriiy served by a low gain
omnidirectional antenna. This antenna must be mounted on the Space Station in
such a way that most of the upper hemisphere is clearly visible. On this
configuration, it is mounted on the left solar panel boom.

Procurement of such an antenna is routine, and there is no
development risk involved.

A Shuttle Rendezvous Radar link will be completed by a transponder
onboard the Space Station. Two transponders and two omnidirectional antennas
will be used for this link.

Rendezvous radar links will be used to malntain continuous position
and velocity data on vehicles that are approaching the Space Station during
the implementation of flight plaas which involve docking. Similar position
and velocity data will be provided for vehicles that are departing, and are
within a specified range of concern. Two antennas, directed force and aft
along the velocity vector, will be used for this function; each antenna is
expected to be approximately three feet in diameter.

Multiple vehicle tracking will be accomplished by Search and Track

Radars which will maintain updated position information on vehicles at
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distances as great as 2,000 km. A minimum of two antennas will be used for

this purpose, to provide coverage of the fore and aft directions along the
velocity vector. A maximum of four antennas will be used to provide complete

coverage of a specified volume around the Space Station,

3.2.3.4 Elements/Utilities Interfaces and Mechanisms

3.2.3.4.1 General

All major elements of the building block concept are assembled using the
standard berthing interface. Solar arrays aad primary radiator elements are
mounted on a large boom which is joined to the station through a standard
berthing interface. The boom incorporates two rotary joints which provide
full 360° rotation about the boom axis and + 52° pivoting perpendicular to the
boom axis. Electrical power and thermal control fluid and vapor loops must

cross these rotary joints.

3.2.3.4.2 Berthing Mechanism

Berthing involves use of a manipulator to achieve final closure of two
spacecraft or assembly elements, thereby insuring relatively small
misalignments and contact velocities. Contact energy attenuation requirements
are low apd alignment guides are shorter than would be required for docking
operations. The berthing interface comprises alignment guides, structural
latches, a telescoping pressure tunnel, retract/extend actuators, utilities
interconnect provisions and supporting structure (see figure 3.2.3.4-1).

Four alignment guides are incorporated to provide 90° indexing for station
elements. Guide length of 5.75" will accommodate expected misalignments for

berthing operations. The manipulator. aided by the alignment guides and other
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sensors as requirea, brings the interfaces

vrd
W -

thin the envelope of the combined

capture/structural latches. Operation of these eight latches, located on the
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alignment guides. completes thue structural mating of the interface. The

structural latches are sized to carry the full pressure load and ali
dynamically induced loads across the interface. Within the 15" length of the
berthing mechanism, a six inch stroke of the mating interface will be provided
by taree pairs of electromechanical actuators. After structural mating is
accomplishad, these actuators will be fully extended.

The telescoping pressure tunnel, shown in figure 3.2.3.4-2, is extended by
independent small electromechanical actuators. The tununel concept
incorporates redundant pressure seals and a complete set of tunnel elements
may be extended from either side of the interface.

Several concepts for utilities interconnects have been proposed. The concept
most favored i: to accomplish-manual connection of all safe utilities within
the pressurized environment using provided jumper hardware. Connection of
thermal control freon loops must be executed outside the habitable volume.
Automatic extension and connection of thermal control fluid and vapor lines
either through opening: in the alignment guides or outside the alignment
guides appears feasible but design has not been accomplished. The size and
type of utilities interconnects which must cross the berthing interface
between modules are shown in table 3.2.3.4-1. Other than the freon lines, all
connections will be within the pressurized environment.

Unberthing is accomplished by disconnecting utilities, withdrawing the
pressure tunnel, and releasing the structural latches. If the element is
attached at both ends, all involved berthing interfaces may be retracced,
providing one foot clearance on each end for lateral removal. It may be
necessary to provide temporary interconnects for some utilities, notably

thermal control, if an element is removed for a significant time.
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3.2.3.4.3 Boom Mechanisms

The large booms which support the solar arrays and major radiator elements are
attached to the station proper through the standard berthing interface. To
achieve optimum orientation, solar arrays and radiators are mounted outboard
of rotary joincts which provide two degrees-of-freedom relative to cther
station elements. The pow2r storage and conditioning modules are also mounted
outboard so that only AC power and freon liquid and vapor lines must be
brought across the rotary joint interfaces.

The inboard joint provides + 52° pivoting perpendicular to the boom axis.
Flexible couplings should be adequate for both electrical power and thermal
control sys:tem transfers. The outboard joint provides 360° rotation about the
boom axis. As this joint will be nonreversing, it is necessary to transfer
utilities through the drive mechanism itself. Electric power will be
transferred through inductive coupling of coils built into rotating and
stationary parts of the mechanism. A conceptu: . sketcn showing transfer of
fluids through the rotary joint may be seen in figure 3.2.3.4-3. The
inductive coupling and mechanical drive element:; are not sktown for clarity.
Detajled design of the mechanical and electrical power transfer concepts has
not been accompiished. Both should be somewhat more straightforward than the

fluid transfer.

3.2.3.4.4 Staticn Wiring Concept

Figure 3.2.3.4-4 illustrates z wiring concept for power distribution from the
boom mounted solar arrays to the various elements of the building block
configuration. DC power is delivered from the solar arrays to the Power
Conditioning Modules (PCM) through two pairs of #2 wire with two pin
connectors at each end as shown. The power is converted at this point to

three phzse 400 VAC and routed from the PCM to a rotary transformer contained
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within the boom rotary joint. Out of the rotary transformer, power goes t> a
distribution switching box which provides four distribution busses. The four
distribution busses are routed through contactless connectors in the standard
berthing interface, to all modules and elements requiring power. Adjacent
modules may be disconnected or a module may be removed without interrupting
power to the remaining modules. Two distribution busses serve as supply
busses at any time. Redundancy is provided by switching to the other pair of
distribution busses at the distribution switching box. For growth, similar
connections are made and voltage is increased from 400 VAC to 800 VAC to avoid

an increase in wire size.

3.2.3.4.5 Thermal Transport Concept

Figure 3.2.3.4-5 illustrates a plumbing concept for a redundant thermal bus
system which services the various modules. Liquid and vapor busses are
precharged and come up attached to the exterior of the module structure.

After the modules are joined at the berthing interface, the thermal busses
must be connected. Automatic connection is preferred but verification of
connactions may require either EVA or sophisticated verification systems. The
building block configuration tends to accommodate this type of series
connection. If a module is to be removed without interrupting service to the
remaining modules, a bypass System must be installed as is indicated for the

liquid bus. A bypass would also be required for one of the vapor busses.

3.2.3.4.6 Manipulator Systems

The Space Station manipulator will be the standard Orbiter RMS unless further
evaluacion of the assembly process establishes the need for greater reach
capability. The RMS shoulder will be mounted to a berthing interface

mechanism modified to accommodate RMS power and control utilities only.
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Through the berthing interface, the manipulator may be stationed at any

available berthing port,

The growth configuration will add two additional manipulator systems identical

to the first,

3.2.3.4.7 Hangar and Satellite Servicing Mechanisms

The OMV and OTV hangars and the satellite servicing facility will be attached
to the station using the standard berthing interface. Each of these
facilities will include simple beam structures representative of the Orbiter
PLB longerons and keel. Lightweight Orbiter payload retention fittiugs will
be provided to mate with already present trunnions on the OMV, OTV, and large
satellite elements.

Utilities will be brought to the service/storage facilities through the
berthing interface, as for modules.

The OMV and OTV hangar doors will be provided with conventional hinge, latch

and drive mechanisms. The satellite servicing facility does not include

deors.
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3.2,3.5 Thermal Control - Evaluation

3.2.3.5.1 1Introduction

Engineering evaluation considerations during this study were:
o Vehicle thermal environment (i.e. view factors, blockage, heat fluxes)
o Radiator area requirements
o Orbiter impacts
o Design complexity
o Verification complexity
0 Surface contamination sensitivity
o Hardware commonality
o Technology status
The following discussions will present a system overview and will access how

well the SOC vehicle configuration satisfies these factors.

3.2.3.5.2 System Overv .w

The candidate Active Thermal Control Subsystem (ATCS), schematically
illustrated by Figure 3.2.3.5-1, is a hybrid design concept that maximizes the
use of local thermal control for individual station modules and satisfies the
remaining thermal control requirements with a centralized system. Each
station module will contain a heat collection and transport system similar in
function to the Shuttle Orbiter cabin design (i.e., a pumping system, col’-
plates, heat exchangers, plumbing lines and flow control valves). These
individual staton module systems will be integrated with a central transpors:
system. In addition, each station module will have heat pipe space radiators
{operating at about 70°F) integrated with the module meteroid protection
shield. The size of these radiators will vary from module to module depending
on surface area availability considering docking ports, windows, thermal

blockage, etc.
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When waste heat in a station module exceeds its thermal capacity, the excess

heat will be transferred to a central collection and transport circuit for
delivery to a central deployed radiator attached to the sclar array boom.
Also, a separate high temperature radiator (operating at about 160°F) will be
attached to the solar array boom to reject electrical power system waste heat
from the regenerative fuel cells and electrolysis units. Pecause the central
transport circuit (or "thermal bus") uses a two-phase working fluid that
transfers heat by evaporation and condensation rather ttan by sensible heat
changes of a single phase coolant, it operates at a constant temperature over
the entire length of the loop. Furthermore, this "thermal bus" is capable of
transporting large thermal loads over long distances with pumping requirements
that are very small compared to single phase fluid systems. Table 3.2.3.5-1
summarizes the IOC weight and power estimates for the candidate ATCS concept.
A vehicle thermal system design which judiciously applies thermal coatings,
vacuum type insulations, isolators, and heaters will be selected for those
systems and elements which are not integrated into the ATCS. The system will
be selected to minimize the addition of electrical heat for thermal control
purposes. The systems which appear to require such a design at this time, are
the communications (antennas), propulsion, remote manipulator, and control
moment gyros. Heaters in these systems will eliminate thermostats and their
inherent failure modes by using sensors to feed software logic for heater
control.

An insulation/coating system will be selected for the habitable areas and
power generation systems which complements the active heat rejection systems.
Insulations and coatings will be applied to unpressurized areas such as the
satellite service structure and OMV and OTV hangars in order to bound the

thermal environments within the payloads design envelopes, while minimizing
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Table 3.2.3.5-1.

10C Active Thermal Control
Subsystem Characteristics

WEIGHT (LBS)

STATION ELEMENT DRY WET POWER (KW)
c/C, 1,345 1,465 0.33
c/e, 1,345 1,465 0.33
LAB, 2,621 2,945 0.89
LAB, 1,803 2,002 0.52
HAB, 2,452 2,591 0.33
L0G, 485 514 0.06
SOLAR ARRAY BOOM 6,683 6,943 0.51
TOTAL § 16,734 7,925 2.97
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operation of the payload thermal/control systems and station power

requirements.

Virtually all elements of the BB configuration receive direct solar energy and
will require surface treatments with low solar absorption to emissivity ratios
to limit structural temperatures and heat leak into the element. This
requires the application of paints and films since this cannot be achieved
with treated metal surfaces. Surface property degradation is discussed in
section 4,2.2.3,

A lightweight high performance multi-layer insulation system of up to 20
layers, approximately 0.25 pounds per square foot, simiiar to that of the
Shuttle Orbiter, is envisioned. The insulation weights for the BB-IOC and
growth versions are 4,119 and 10,800 pounds, respectively.

Local protection from RCS engines plume heating will be required. The extent
of the protaction and its impact on design will depend on engine firing
requirements,

The propellant tanks of the monopropellant hydrazine propulsion system will be
individually mounted on the command module and each will be maintained wizhin
temperature limits through passive thermal control. For the hot environment,
each tank (3.5 foot diameter) will be maintained below its upper temperature
limit by use of insulation and an appropriate coating. For the cold
environment, each tank and the fuel distribution system will be maintained
above its lower limit by the use of insulation and heaters. The heater
wattage needed for this purpose is shown in table 3.2.3.5-2,

Preliminary design indicates that the 25 pound thrusters will be placed in
clusters of 12 thrusters each and will be mounted on the command module next
to the propellant tanks. Passive tbermal control of the thrusters and their

feedlines will be achieved through insulation of the cluster and the use of
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heaters for the engines and lines. Heater wattage needed is shown in table

3.2.3.5-2.
The thermal control heaters for the propulsion system are sized based on a
50% duty cycle,

TABLE 3.2.3.5-2

PROPULSION SYSTEM HEATER REQUIREMENTS

TANKS & FUEL DISTRIBUTION THRUSTERS & FEEDLINES
CONFIGURATION  # TANKS TOTAL AREA HEATERS # THRUSTERS HEATERS
FT WATTS WATTS

BB -~ IOC 8 308 862 24 960

BB ~ GROWTH 16 616 1724 24 960

The passive thermal control design of the antennas is similar to that of the
Orbiter Ku-band antenna. Each electronics box will be of minimal thickness
with the electronics mounted directly to a cold plate radiator located on the
large face of the box. The box will be covered with silvered teflon with an
absorptance/emittance (q%&)= .13/.8 . The radiator area for each electronic
box and internal heat generation for each different type of antenna is shown
in table 3.2.3.5.-3. Also shown in this table is the heater wattage needed in
each electronic package to kczp the electronics above their minimum
temperature.

The heater wattage needed to maintain the gyros, gimbals, and comparator of
the S/Ku-band steerable dishes above their minimum temperatures are shown also
in table 3.2.3.5-3. The heaters for maintaining minimum temperatures are
sized based on a 50% duty cycle. Antenna heater operation will only occur

when the antenna is off two hours or more.
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3.2.3.5.3 Technical Evaluation

3.2.3.5.3.1 Thermal Environment

The BB configuration Space Station configuration orbits in a gravity gradient
~tabilized, earth-oriented attitude. This results in constant terrestrial
thermal fluxes incident on the structural elements with somewhat cyclical
solar and albedo incident energies.

Various segments of the module surfaces will be sunlit throughout the day
portion of the orbit with increasing areas being sunlit with higher beta
angles. It has been proposed that essentially all of the module surface
(except for windows and external equipment) be covered by body-mounted
radiators in order to reduce the size of the deployed, planar radiators.
Therefore, it is assumed that high performance (10w61ﬁ5) ratio) thermal
coatings will be required for all surfaces used to reiect heat. These
coatings should be refurbishable or replaceable with minimal operational
impact.

In order to assess the worst case incident thermal flux levels, analysis was
accomplished with the SOC configuration orbiting with a solar Beta angle of
52°. Orbital average incident flux levels are shown in figure 3.2.3.5.-2,

As can be seen, solar and albedo fluxes are ralatively high on the modules but
are quite low on the deployed radiators. The low flux levels on the radiators
occur because they are assumed to remain edge to the sun throughout the
orbit. This presupposes that the booms on which the radiators are located
will be rotated to maintain the inertial pointing capability of the solar
arrays as well as providing for minimal incident thermal fluxes on the
radiators. This rotaiion would then imply the utilization of a fluid swivel

or slip ring through which the working fluid could transfer thermal energy.
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Space viewing factors are given in figure 3.2.3,5-3. These factors may appear
somewhat low, but take into account the full module circumference instead of
only a preferred segment for body-mounted radiator lscation. The deployed
planar surface radiators are active on both sides so one side will have

approximately 25% of its space viewing blocked by the station modules and

structure with the other side having a somewhat better view.

If full surface body-mounted radiators are used on the modules, thermal
interaction could be significant between radiators of different temperatures
with good views of one another. This becomes more of a problem if the view to
space is limited by other structure such as the hot sunlit solar arrays. All
of these influences must be factored into an accurate assessment of radiator
heat rejection capability.

The IOC and growth versions of the BB configuration will have quite different
thermal characteristics. Some modules which have a good view to space at 10C
will have that view reduced significantly by the addition of subsequent
structural components. These reduced heat rejection capabilities at the
modular level must be compensated for during the growth buildup phase. This
would suggest that thermal load sharing between modules exist and/or that a

greater load be assumed by the deployed radiators.

3.2.3.5.3.2 Radiator Areas

Radiator area requirements initially were defined for body-mounted radiators
integrated with station modulc meteoroid protective shields to determirc heat
rejection capabilities from each station module., In general, the
effectiveness of the body-mounted radiators is significantly reduced by
blockage effects from surrounding vehicle elements as discussed in section
3.2.3.5.3-2. As a result, although most of the cylindrical station module

walls are available, body-mounted radiators can only reject about 30-35% of
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the station total waste heat as summarized in Table 3.2.3.5-~4,

Deployed radiator panels were sized to reject the palance of the vehicle waste
heat not a-~commodated by the body-mourted radiators. In order to reduce orbit
environment aeat loads on these two-sided deployed panels and thus reduce area
requirements, the radiators are mounted to the solar array boom to maintain an
"edge-to-sun" attitude. For I0C, two-sided deployed radiators with a total
radiating area of 5,346 ft2? are required. This total includes 1,237 ft2 of
high temperature radiator (160°F average) to reject the electrical power
System waste heat. The total two-sided deployed radiating area increases to
10,043 £t? for the growth station which includes 2,473 ft? for the power
system. The aforementioned radiators were sized to reject the total vehicle
waste heat load. Past studies have shown that the use of a thermal storage
phase change material can further reduce area requirements when large
temperature transients are encountered. These transients normally result from
widely varying environmental heat fluxes and/or internally generated vehicle
waste heat. For this study, the power systewr radiators were selected to
illustrate the potential application of thermal storage.

Because of the difference in day/night times and the difference in
efficiencies between the fuel cell modules and the electrolysis modules, the
night time heat load for the power system is much greater than the day time
heat load. As mentioned, if part of the night time heat can be stored in a
phase change material for rejection during the day time, the power system
radiator area can be reduced further. One candidate for a phase change
thermal storage material for the regenerative fuel cell heat rejection system
is Barium Hydroxide Octahydrate. 1Its density is 136 1b/ft3, melting point is

172°F, and latent heat is 129 btu/1b.
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Preliminary analysis shows that the use of 429 1b. of this phase change
material would reduce the required remote radiator area by about 50%.*
Required radiator area and capability and applied heating loads without and
with thermal storage are shown in figures 3.2.3.5-4 and 3...3.5-5
respectively. Although the weight of the phase change material and associated
hzrdware will probably be equivalent to the radiator weight reduction, other
design considerations such as view factors and blockage may still favor the
use of thermal storage material. In addition, a thermal storage approach
permits a non-articulated radiator to be a viable station option.

{* Power system waste heat characteristics used in the thermal storage
evaluation were not the same as used in the final radiator sizes documented
earlier; however, the general conclusions reached and relative savings

demonstrated are valid.)

3.2.3.5.3.3 Orbiter Thermal Control Impacts

While the Shuttle Orbiter is docked to the station, heat rejection from the
Orbiter radiators is reduced about 15% due to blockage from surrounding
station elements. This reduction is considered acceptable since the Orbiter
probably will be powered down the majority of the time.

There are no additional Orbiter thermal control impacts that can be identified

at this time.

3.2.3.5.3.4 Design Complexity

The primary design complexity involves the deployed radiator and its

associated launch packaging boom/contact heat exchanger deployment radiator
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construction, and activation. Since it is desired to maintain an

"edge-to-sun" attitude for the deployed radiator panels, a gimbal system will

be required.

3.2.3.5.3.5 Verification Complexity

Component level verification should follow that of previous programs with the
possible exception of life cycle tests. Items which fall into this category
are insulations, coatings, heater system components, and fluid distribution
system components. These tests with the possible exception of the heat
pipe-based "thermal bus" and heat pipe radiators, do not appear to be any more
complex than those of past programs.

The question of rerification complexity in the thermal area arises from
verification of the integrated thermal control design of the Space Station.
The recommended approach is to baseline ground thermal testing of typical
elements and interfaces based on design commonality (to the ullest extent
possible) supplemernted by Orbiter in-bay or deployed testing of items
requiring unique environments such as heat pipe radiators. Testing during the
Space Station buildup would be limited to checkout type tests.

Since the thermal verification approach is not highly configuration dependent,

additional discussion is presented in section 4.2.2,7

3.2.3.5.3.6 Surface Contamination

A high probability of thermal control surface degradation exists is a result
ct the close proximity of RCS engines to station modules. Most surface
treatments are expected to exhibit and require low solar absorptivities which
will increase as a result of plume impingement.

The distance from RCS engines to radiators and solar panels should minimize
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contamination of these surfaces. However, detailed analyses are required to

determine acceptability.

3.2.3.5.3.7 Commonality

Within Space Station - Though each module in the BB configuration will

experience somewhat different thermal environments and blockage of space
viewing, the degree of TCS hardware commonality between the modules should be
high. However, there must be some tailoring of the body-mounted radiator
location on each module to account for poor view factors to space. Since
these view factors would change from IOC to growth versions, a trade must be
made to determine the efficiency of radiator placement on each module. As a
result, design commornality would be degraded to some degree.

Thermal insulation and coating characteristics will be similar from module to
module. However, as mentioned previously, tailecring of thermal coatings,
along with proper radiator placement may be required to balance the heat
loads. RCS modules and antenna packages are assumed, at this preliminary
stage of design, to share common thermal control elements with the primary
vehicle TCS.

Commonality with platform - A free-flying platform would have a high degree of

TCS commonality with the BB Space Station. Since high performance thermal
coatings and fluid swivels will have been developed for the station, redesign
would probably not be required for the platform. Likewise, thermal control
hardware existing for the station (insulation, cold plates, heat exchangers,

heat pipes, heaters, etc.) can be scaled for the appropriate thermal load.

3.2.3.5.3.8 Technology Assessment

The only technology development item peculiar to the Building Block is the

need for a deployed radiator mechanism and the associated fluid swivels and
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gimballing system. With the exception of fluid system featurss, much of this
technology can be shared with the electrical power system. The on-~going

OAST-sponsored thermal technology program is discussed further in section

4.2.2.8.

3.2.3.6 Power Evaluation

3.2.3.6.1 Introduction

The Power System consists of three subsystems: Energy Conversion Subsystem
(ECS), Energy Storage Subsystem (ESS), and Power Management and Distribution
Subsystem (PMAD). For the Building Block coafiguration, the power system was
designed to supply an average of 75 KW at I0C and 150 KW for the growth
station. The system was designed with the following groundrules:

1. Ten year operational life was a design goal for the various
components.

2. A modular buildup scheme was used where practical,

3. Module changeouts were permitted to achieve the 10 year operational
life of the components and the extended life of the station.

4. EVA was minimized for buildup but was not prohibited.

5. A two hour period was baselined for an emergency energy storage
sizing criteria. This would allow for the loss of one complete charging
cycle.

6. A two axis control system was assumed to maintain the arrays

perpendicular to the solar vector at all times.
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3.2.3.6.2 System Overview

The power System for this configuration wil] consist of g deployable planar

silicon solar array, regenerative fuel cell modules for energy storage, (ESS),
the PMAD components, and associated thermal control elements. The solar array
consists of large area silicon cells welded to g flexible kapton substrate, to

form blankets, The array will pe Supported by an "Astromast" type structure.

A breakdown of the weights ig Presented in table 3.2.3,6,2.1. As shown, the
there will pe approximately 11,202 1bs. suspended on the boom at I0C and
18,168 1bs. on the boom when the growth statinoc is achieved. This will result
in a significant portion of the total moment-of-inertia for the station being
located at the arrays. Two requirements are unique to the building block
configuration,

1. The ECSs solar array will have to Provide its own Structure.

2. The ECS solar array will have to Provide a method of orienting itself

to the sun.

figures 3.2.3.6.2-2 and 3.2.3.¢.2-3 respectively. Thig concept has several
features which must be mentioned, First, the array and mast cén be separated
from the boom and strongback. This ig important to allow for growth and
replacement, Second, the boom can ang will be Segmented to allow for

packaging. Finally, the Strongback can be eXpanded, to accommodate growth., A
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Table 3.2.3.6.2-1. Building Block Configuration
Power System Characteristics

Solar Array (ECS)

Weight (1bs)
10C 6,656
Growth 13,312

Regenerative Fuel Cell (ESS)

Weight (1bs)

10C 4,336
Growth 8,672
PMAD

Weight (1bs)

Utility Module 1,332
Command/Control Module 646
dabitat Module 362
Logistics Module 221
Laboratory Module 372

Area (ftz)
16,396
33,792

Volume (ft3)
13.64
14,08

6.70
3.53
6.56
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TABLE 3.2.3.6.2-2

ARRAY WEIGHT SUMMARY

(FOR 27.5 KW BUS POWER/8,500 FT )
(PER RESOURCE MCDULE)

BLANKET WEIGHT @ 0.27 LB/FT
(INCLUDES CELLS, COVERGLASS, ETC.)

ORIENTATION MECHANISM/DRIVE
ASTROMAST

TENSION/GUIDE WIRE SYSTEM
DEPLOYMENT MECHANISM

TIP FITTING

OUTBOARD SﬁPPORT BEAM
LOCKING LEVER

COVER

CONTAINER ASSEMBLY

MISC. HARDWARE

SUBTOTAL (CANISTER & OQUTBOARD)
STRONGBACK

MAIN BOOM (70')

TOTAL (INCLUDING ALL STRUCTURE)

FOR 75 KW BUS POWER, 3,328 LB x 2 = 6,656 LB

2,295 LB

25
414
56
52
12
19
19
59
108

25

3,084
86

158

3,328 LB/RESOURCE MODULE
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For this configuration, the ESS/PMAD module and the radiators will be located
on the boom. This was done to minimize the fluid transfer problems from the
ESS/PMAD module to the radiators. Also, this will provide an orientation
rethod for the radiators, since in general they need to be perpendicular to
the solar array. Since the array in this configuration 1is perpendicular to

the solar vector at all times, it represents the minimum size.

3.2.3.6.3 Technical Evaluation

The following items should be considered for the Building Block approach:

1. Use of a two axis control system minimizes the solar array area for a
given desired bus power.

2. The solar array system must provide its own structural support;
significant development wil} be required in this area.

3. The array pointing system will require two gimbals per wing and a
control system that is basically free of station interference. While this
will be complex, it offers the maximum flexibility for the station, i.e.,
station attitude will not be significantly constrained by the array system.
Some estimates show that up to 25% of the total ECS cost could be for the
support/orientation elements.

4. With this configuration future developments such as GaAs concentrator
arrays or solar dynamic systems could be adapted to fit the boum support
system.

5. This configuration will require that electrical power be transferred
across moving joints. This will dictate the use of either slip rings, roll
rings, or rotary transforms and in this size range, i.e., 25 KW to 150 KW, none

of these {s state of the art.
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6. The ESS/PMAD module is located on the boom to minimize the distance

over which the array power must be transmitted and to locate it close to the
thermal control radiators which eliminates the need for a flexible fluid
joint,

7. The length of the boom will be dictated by a combination of shadowing
and plume impingement considerations.

8. The natural frequency of the ECS will become a major design driver
for the control system.

9. Initial boom design will dictate the ultimate growth capability.
Growth beyond this limit will require additional supporting structure.

10. Since the entire power system is mounted externally, all hardware

maintenance will require EVA's or large module changeout.
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3.2.4 Operational Accommodation Evaluation

3.2.4.1 Configuration Design Considerations

3.2.4.1,1 Separation from the Space tation

Figure 3.2.4.1-1 also illustrates the "building block" I0C. This
configuration has two ports, one being located on the positive velocity
vector, with the second port located in the out-of-plane (Hbar) direction.
This implies implementation of the separation and return procedures developed
for the angular momentum and velocity vectors.

As is the case with the "T" configuration, plume impingement on the solar
arrays may be excessive. The initial burn separating the docked vehicle from
the port is either out-of-plane or in the velocity vector direction. A radial
burn follows 10 minutes later in both cases. The length of the solar arrays
is approximately 117 feet extending in the out-of-plane direction. The
out-of-plane sequence places the separating vehicle about 100 feet away at the
initiation of the radial burn indicating a possibility for significant plume
impingement on the arrays. This is clearly evident in figure 3.2.4.1-2.
Although the figure is drawn showing the Orbiter and its VRCS jets, the
situation would be similar for an OMV or OTV. The same scenario exists for a
separation along the velocity vector. The boom length (about 80 feet) of the
array and the "central" location of the port on the velocity vector may help
to alleviate some of the impingement of the arrays. However, in either
situation, the modules will be in the plume flowfield as shown in figure
3.2.%.1-3. This problem could be eliminated by waiting lorger before
executing the radial burn. This would place the separation vehicle further

away at the time of radial burn, thereby lessening the amount of solar array

area subject to impingement.
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A. "T" I0C
(velocity-vector Approach)

B. "Delta" IOC
(Inertial Approach)

S|

C. "Building Block" IOC
(Out-of-plane Approach)

Figure 3.2.4.1-1,

O. "Building Block" I0C
(Velocity-vector Approach)

Orbiter Overhead Window View During

Final Approach to Space Station 153




Note:

Figure assumes one nose and two tail VRCS jets added to
Orbiter canted 45° from vertical.

Figure 3.2.4.1-2. VRCS Plume Dynamic Pressure Contours
(Building Blsck Configuration:
Out-of-Plane Separation/Approach)
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Note: Figure assumes one nose and two tail VRCS Jets added to
Orbiter canted 450 from vertical.

Figure 3.2.4.1-3. VRCS Plume Oynamic Pressure Contours

(Building Block Configuration: Velocity
Vector Separation/Approach)
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3.2.4.,1.2 Return to the Space Station

The return profile necessitated by the out-of-plane docking port (on the Hbar)
in somewhat undesireable. This follows directly from the comments presente.!
in section 4.11 regarding the positive closing rate that may be present in an
out-cf-plane approach. The second por. located on the velocity vector lends
itself to the positive Vbar approach quite readily. The concerns with plume
impingement are the same as those mentioned during the separation sequence and
should be referred to here. With regard to the scenario of simultaneously
docked Orbiters, the port locations appear to be designed such that clearance

will not be a problem.

3.2.4.2 RMS Reach Capability

An integral subsystem of the Space Station will be one or more manipulators
remotely operated and used to perform a variety of operations. Some of the
more critical requirements of a station manipulator will be station assembly,
module removal, OMV/OTV berthing in the hangar area, deployment of the OMV/OTV
from the hangar area, as an aid to OMV, OTV and satellite servicing, and
possibly as an aid to Orbiter/station berthing. The analysis conducted in
support of this document emphasized the use of the current Shuttle RMS to the
maximum extent possible for assembly of the Building Block concept. A
"special" station manipulator was considered only for those operations which

exceeded the reach capability of the Shuttle RMS.
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The RMS/station manipulator analysis was performed using the RMS Desk Top
Planing Simulation (RPS) developed for RMS mission planning activities and
used to define RMS payload handling capabilities and procedures for STS
missions. The pyrogram was updated and modified to inciude the Building Block
configuration as well as a generalized manipulator in the sense that the
length of the manipulator booms can be varied to accommodate larger reach
envelopes than the current RMS. The number of active joints can be reduced
and the booms shorcened so that a Handling and Position Aid (HPA) type of
mechanism can also be accurately simulated.
The manipulator analysis included herein, is based on a kinematic model of the
RMS in that no rigid or flexible body dynamics are included. This limitation,
however, does not invalidate the feasibility of using the RMS for station
assembly since all modules handled are within the weight and inertia limits
verified for standard RMS operations. The study results are based on the
current RMS control algorithms and software and verify the reach capability as
well as the maneuver Path for both the RMS znd the station manipulator. The
simulation also checks for singularities and joint reach limits. 1In summary,
all maneuvers studied for the Building Block configuraticn assembly sequence
should be valid with the exception of possible crew visibility constraints.
RMS operator eye-point and CCTV views can also be generated using the RPS
simulation, and these results will be reported in future documentation,
In performing the kinematic analysis to assess the RMS capability to remove
station modules from the Orbiter payload bay and assemble the station, the
following assumptions were used.

l. Port and starboard RMS's are available

2. Once the C/C module and an interface module are mated, all remaining

construction using the Orbiter RMS's will be accomplished with the Orbiter
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firmly docked to the Space Station.

3. Grapple fixture location and orientation are identical on all modules
of the same type.

4. Payload bay locations consider only RMS ch capability and not
Orbiter c.g. restrictions.
Figures 3.2.4.2-1 through 3.2.4,2-7 illustrate an assembly sequence for the
ICC version of che Building Block configuration. Each figure represents a
"snapshot" of the entire maneuver that was performed on the RPS simulation to
verify the RMS reach capability, that the entire maneuver path was free of RMS
singularities, and that reach limits were not encountered. Each figure label

reads as follows:

Conflguratlon ’

Flight Numb=r———————j

Component Identifier

Trajectory Step ———u
The component identifier appears only in labels where more than one component
to be assembled is manifested in the cargo bav for that flight. The
trajectory step refers to the sequenéed "snapshots" of the RMS configurations
during a specific maneuver,
Flight one carries to orbit the first C/C module and the first Interface
Module (IM) with a solar array. The assembly sequence shown in figure
3.2.4.2-1 uses a port and starboard RMS to deploy and mate these two modules.
The combination is then docked to the Orbiter and the solar array deployed.
Figure 3.2.4.2-2 shows the Flight 2 assembly sequence once the Orbiter is
docked to the IM. The port RMS can adequately maneuver the habitability
module from the Orbiter bav to its docked position on the IM as shown in the
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Figure 3.2.4.2-1.
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Building Block Assembly - C/C
module and interface module
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Figure 3.2.4.2-2, Building block assembly - 160
Habitat Module




Figure 3.2.4.2-3. Building Block Assembly - Interface
Module and Station Manipulator 161
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Figure 3.2.4.2-4. Building Block Assembly - Interface
Module/Solar Array
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B-FS-1 B-F3-2

B-FS-3 B-F3-4

B-F3~-3

Figure 3.2.4.2-5. Building Block Assembly - Lab 163
Module and Logistics Module
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_ Figure 3.2.4.2-6. Building Block Assembly - Second 164
Lab Module and Second C/C Module
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steps of the figure.

Figure 3.2.4.2-3 represents Flight 3 in which an interface mocule and the
Station Manipulator (SM) are brought up. The interface module is placed on
the open end of the C/C module and the station manipulator is placed on an
out-of-plane port of this interface module. With upper and lower arm boom
lengths of 45 feet each, the station manipulator has adequate reach capability
to assist in the completion of the station assembly.

Flight 4 docks the interface module containing the second solar array to the
habitability module as shown in figure 3.2.4.2-4 using the station
manipulator.

Flight 5 which is illustrated in figure 3.2.4.2-5 utilizes the station
manipulator and the port RMS for this assembly sequence. The first lab module
is docked using the port RMS. The station manipulator maneuvers the logistics
module to the interface module located between the C/C and habitability
modules as shown in the figure,

The second lab module and second C/C module are brought up on flight 6 and
docked to the station using the station manipulator and illustrated in figure
3.2.4.2-6. The remaining IM and OMV hangar carried on flight 7 can be
maneuvered into their proper location using the station manipulator, This

final assembly sequence completes the "race track" and is shown in figure

3.2.4,2-7.

3.2.5 Safety Accommodations

The safety accommodations provided for the I0C (Initial Operational
Configuration) Phase (Phase I) vere used for the basic concept evaluation
since this was considered the most critical with respect to crew safety. The

addicional volume available during Phase IV increases the time of reaction
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to a leak to approximately 85 minutes (see section 3.2.5.5). Otherwise, the

comments are applicable to both Phase I and Phase IV,

3.2.5.1 General

The Building Block Configuration appears to satisfy the broad crew safety
requirements. This assumes that the design and operational constraints
specified in Space Station Configuraticn Books 3 and 6 are implemented during

continued station development and operation.

3.2.5.2 All Habitable Modules (Habitat, Laboratories, Interface and c/C)

Egress Capability

Dual egress paths from each module are incorporated.

3.2.5.2.1 Logistics Module

Book 3 Systems Requirements and Characteristics specifically exempts the
logistics module from the "two or more entry/egress paths." The logistics
module has only one egress path, the risk to a crewmember occupying this
volume during the occurrence of an accident forcing evacuation of the volume
could probably be reduced to an acceptable level by proper locatisn of
equipment, adequate materials control, elimination of potential ignition
sources, and maintenance of adequate traverse clearance during operations in

the module.

3.2.5.3 Enclosure of High-Pressure or Hazardous Fluid Tanks

The logistics module will be divided into a pressurized section and an
unpressurized section. High pressure and hazardous fluids will be transported
in the unpressurized section to avoid the possibility of fluids propagating
into other modules or cause overpressurization of one or more modules. The

separation distance of various tanks has not been defined.
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3.2.5.4 1Isolation of Modules after Accident Occurrence

One problem that arises from the provision of dual egress routes from a
habitable module is the complexity of the process of sealing ofif that module
after such things as a spill of a toxic fluid. This suggests the desirability
of a self-contained environmental control circulation system for modules such
as the laboratories to minimize the potential for cross-contamination of
modules while the hatches at each end of the contaminated module are being

closed.

3.2.5.5 Reaction Time after Occurrence of a Leak

The Safety Division position, with respect to hatch management, is that all

hatches should be normally open to create ease of transit from module to

z module, reduce the wear on hatch mechanisms, prevent hatch opening
difficulties because of small pressure differentials, and maintain the maximum

volume for bleed down in case of a leak., Of these reasons, the last is

probably most significant, considering the large number of sealing surfaces
and the increased potential for a leak. In the I0C configuration of the
Building Block, a rough calculation of the time to react to the occurrence of

a leak equivalent to a one-inch diameter hole would be 60 plus minutes,

| assuming a 95 percent efficient orifice, an occupancy of 25% solids in the
station, and a reduction of pressure from 14 to 9.1 psia. If a leak detector
sufficiently accurate to determine the module containing the leak is ‘

available, this should allow adequate time to react to the occurrence by

evacuating and sealing off the affected module.

3.2.5.6 EVA Operations

The antenna locations are apparently such that radiation hazards to EVA

crewmembers are minimal, but some Reaction Control System (RCS) package

locations may require thruster deactivation during EVA, The system geometry
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should allow ready design ard implementation of adequate EVA traverse and work

station retention mechanisms.

3.2.5.7 Repair and Reactivation of Modules after an Accident

Adequate airlock provisions are provided to allow Intervehicular Activity
(IVA) sui-ed reentry into a module that has been isolated because of an
accid nt to perform necessary repair or reconfiguraticu to permit continued

use of the module.

3.2.5.8 Multiple Orbiter Docking Ports

The ability to dock with and access the Orbiter from various volumes of the

Space Station is acceptable.
3.2.6 Costs

3.2.6.1 Groundrules and Assumptions

The following groundrules and assumptions were used in the cost analysis for
the Building Block configuration:

o The Space Station Cost Model (SSCM) developed by Planning Research
Corporation (PRC) was used to develop hardware and system level costs.

o The concept was treated as one work package.

o The IOC configuration only was costed.

o No learning was assumed.

o No explicit reserve was included.

o No STS flight costs were included

o Subsystem costs were allocated to the modules on the basis of weight.

o Costs are expressed in millions of 1984 constant year dollars. Since

SSCM outputs costs in 1982§, the inflation adjustment was made using the NASA
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R&D inflation index (1.175 for 1982 to 1984 dollars).
o Program level costs (including fee) were included using the Code B
factors.
o Complexity factors cunsidered to be 1.0 except the following:
o Closed loop ECLS was costed using the open loop ECLS CER with 1.6
complexity factor. Factor based on CDG trade study.
o Berthing and docking adapter used a 0.8 complexity factor and used
the ASTP adapter as an analogy.
o Complexity factor of 0,6 used for fuel cell based on JSC analysis.

o GSE complexity factor of 0.8 was used, based on CDG cost estimate.

3.2.6.2 Presentation of Results

Figure 3.2.6-1 presents the results of the SSCM for the Building Block
approach. The model computes the DDT&E and the first unit costs. The costs
shown are for one of each Space Station module or element (i.e., hab module,
bocm array, etc.) Therefore, figure 3.2.6-1 does not show the total cost of
the station.

Figure 3.2.6-2 presents the DDT&E and First Unit Costs after being spread to
the different modules. The three parts to this figure present cost spreads by
module for DDT&E, Production, and total costs. As with the previous figure,
the costs shown for the production phase are for the first unit of each of the
modules.

Figure 3.2.6-3 presents the summary of the costs by quantities and types of
modules that comprise the IOC configuration. The first two cost columns recap
the totals found in figure 3.2.6~2 for DDT&E and Production (First Unit). The
third cost column is the total production costs taking into account the
quantities of each module or element. The final column is the total of the

DDT&E and Production costs and is therefore, the total of the Space Station at

10C.
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3.3 Delta Truss Configuration Evaluation

3.3.1 User Accommodations Eva'uation

3.3.1.1 Viewing

The delta truss Space Station configuration will provide for earth view from a
pressurized area only on the sun side of the earth. This would be sufficient
for most, but not all, earth sensor development. The orbit inclination would
again be 28.5°,
The unpressurized sensors for solar and stellar viewing vould be located along
3 the solar cell truss with the stellar sensor at a 90° angle to the solar
? vector. The viewing_flexibility ic limited in viewing frequency of a specific
’ target. However, it is possible to accommodate simultaneous earth, sclar, and

stellar viewing with this configuration.
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3.3.1.2 Power

The power supplied to the user at IOC will be 60 KW continucus and at growth

it will be 120 KW continuous.

3.3.1.3 Pressurized Volume

The pressurized volume at IOC provided to the user is two 22 foot modules.
For growth, a tctal ot four 22 foot modules are provided with one 44 foot
module. The 44 foot module offers facility versatility in the growth phase
and the two 22 foot modules offer flexibility at IOC. However, this is an

issue; see Section 5.0,

3.3.1.4 Crew Time
A considerable amount of the crew's time has been allocated to the user as
shown in sections 3.2.4, 3.3.4, and 3.4.4, each section pertaining to the

building block configuration, delta truss configuration, and "T" configuration

respectively.

3.3.1.5 External Attachments

A pallet attachment for the user 1is possible with this configuration.

3.3.1.6 Microgravity

The acceleration level at the modules that require low gravitational levels
are assumed to be 10—4 g nominal. However, the effect of the modules distance

from the station's c.g. has not been determined and needs to be considered for

each configuration.
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3.3.2 Crew Accommodations Ev: luation

Due to the amount of equipment and the arra-gement of the floor and ceiling,
the C/C module only has the capability of having windows in one plane. It
would be desirable to have windows capable of viewing all directions. Crew
accommodations in the module are the WCS, a minimal galley, stored food for
eight people for 22 days and a hygiene station. The accommodations are
adequate.

If the manipulator is controlled from this module, the limited visibility will
require additional windows or video equipment and perhaps at times, EVA
crewperson to guide the manipulator.

The habitabiiity module provides sleeping quarters, personal hygiene, medical
facilities, and a galléy/wardroom. The private sleeping quarter volume is
adequate for sleeping, dressing, video training, and entertainment, grooming,
and associated activiti=s. It is generally preferable to have the sleeping
quarters located away from noisy equipment which would disturb a sleeping crew
person. The habitability module does not ertirely succeed in doing this, for
adjacent to the sleeping quarters is the Personal Hygienz and Medical
Facility. The Personal Hygiene area contains two combination,
shower/urinal/handwash facilities and a Waste Control System (WCS). The
Medical Facility contain: limited medical equipment and supplies and the

physical conditioning equipment. To make their location in the habitability
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module acceptable, the WCS and health maintenance equipment noise levels must
be sufficiently low to avoid disturbing a sleeping crewperson or special
accoustical isolation must be provided. The Personal Hygiene Facility coupled
with a WCS in the Command and Control Module is adequate for eight
crewpersons. The galley and wardroom provide facilities for use by eight
crewpersons simultaneously which is adequate. The wardroom area should
provide a capability for group training or entertainment.

For growth, a second similar habitability module is added to the station and
the redical/physical conditioning equipment is moved to the Life Sciences Lab.
The second habitability module is adequate for the increase in crew.

The habitability module is designed to permit unimpeded passage through the
module. The module maintains a consistent heads-up orientation which is
desirable. The floor and ceiling are offset from the module walls to allow
utility equipment location. This combination renders it difficult to locate
windows in these areas and conseqﬁencly the;e are none. (It would be
desirable to have windows encitcling the module.)

The "delta" size and configuration has the following disadvantages:

o About one-third of the view from any module is blocked by
structure/solar arrays/other module. It is desirabtle to be able to view in
all directions from a module.

o An EVA crew person to reach the critical systems equipment on the "top
fo the delta" must traverse considerable distance. This is not a decisive
factor; however, it does add to the work, time, and complexity of the EVA.

The existing manipulator system is only 50 feet in length. To reach all areas
of the station will require:

o The development of a new manipulator

o Moveable manipulator
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o Numerous manipulators

3.3.3 Engineering Evaluation - Delta Truss

(O}

.3.3.1 Assembly and Growth Evaluation

Two preliminary launch-by-launch sequences have been developed and are
surmarized in figures 3.3.3.1-1¢la. The first sequence divides the truss into
three sections, each of which is launched simultaneously with the energy
conversion, storage, and solar array equipment. In the second sequence, the
entire IOC truss is launched on the first flight. These sequences are based
on Orbiter payload bay. These sequences are based on Orbiter payload bay
packaging that is plausible but optimistic. It is assumed that an Orbiter
docking module i3 carried on all flights. All elements are installed
initially in their final locations. Completion of IOC and growth capabilities
is denoted by heavy vertical lines. Figure 3.3.3.1-2 illustrates the assumed
packaging in the payload bay for each launch in the first sequence developed
for 1I0C. Figure 3.3.3.1-3 {illustrates the payload bay packaging for the first
launch of the second sequence and the power module layout required to enable

this sequence.

3.3.3.1.1 User Accommodation: Assembly and Growth

The delta provides substantial versatility in accommodatiouns for users. The
truss has large non-dedicated areas that are usea@le for most unpressurized
payloads. It would also be possitle to place additional pressurized modules
along the sides of the truss, although radiators would have to be relocated.
The order in which facilities are added is also relatively unconstrained after

the first few launches.
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3.3.3.1.2 Systems Engineering: Assembly and Growth

It is assumed that work requiring a low-gravity euvironment will be suspended
during any station asserbly operations, and therefore that this is not a
discriminator. However, an earth orientation may be necessary while an
Orbiter is berthed to the station depending on momentum storage capacity. If
this is the case, operations requiring large amounts of power may be
interrupted.

Transition efficiency is high. In the buildup scenario used, no element
relocations are necessary.

There are no elements in the early phase that are discarded in later stages.
Assembly will require the full capability of the Orbiter RMS. A second RMS or
a handling and positioning aid will be needed in some steps. Note that the
RMS reach analysis in section 3.3.4.2 assumes a large manipulator on the
station an an early point in the buildup in lieu of a handling and positioning
aid. Substantial EVA and/or RMS operations will be necessary primarily for
joining the truss sections in the first launch sequence or for installation of
the power equipment to the existing truss in the second launch sequence. Both
these functions appear possible with the joining of truss sections being
judged the more difficult., It is noted that joining truss sections is
required in either scenario in the growth phase.

Removal of a module does not affect the structural characteristics of the
station. If the pressure loads between modules are carried through the truss,
removal is a simple process of disconnecting internal and external umbilicals,
closing hatches, and depressurizing and retracting the intermodule connectors.
1f the loads are carried directly between modules, the task may be more

difficult dependirg on the design of the connectors.
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Two Orbiter berthing ports are available at I0C and four in the growth
configuration. Sixteen other ports are available for logistics modules and

other temporary payloads, since each IM has five ports.

3.3.3.1.3 Programmatics: Assembly and Growth

The first buildup sequence reaches I0C in seven launches. Redundancy of
essential systems is reached in three launches after which the station could
be permanently manned. Lack of a LM or logistics module would limit both crew
size and useful activity. The fourth launch supplies both of these modules
and the station could do useful work from that time. The second buildup
sequence, in which the entire truss is launch at one time, would still require
three launches before permanent manning but reaches I0C in six.

The reference scenario teqﬁires 15 flights to reach full growth capability.
The alternate buildup scheme could reduce this by one flight Efficient
hangar design and packaging might save another flight. Full capability might

therefore be achieved in 13 launches.

3.3.3.1.4 Safety: Assembly and Growth

As configured (see figure 2.3-2), the OTV propellant storage facility is

located very near the inhabited modules. This location was sel-cted for its

proximity to the station center of mass to minimize moment of inertia

variations. Alternative locations appear possible but less desirable. 1
Isolation of a hazardous condition, such as a spill of a toxic substance, can

be done with little difficulty. Since there are two routes to each module,

any one can be isolated without significant disruption of other activities.




3.3.3.2 Structural Dynamics and Control Evaluation

3.3.3.2.1 Delta Flight Modes

The Delta truss configuration has been designed to fly primarily in a solar
inertial flight mode; however, it can also fly in the earth fixed flight mode
(LVLH). See figure 3.3.3.2-1. The solar array is currently sized for the
solar inertial flight mode, Electrical power produced in the earth fixed
flight mode (LVLH) would be approximately 55% of the power produced in the
primary flight mode. The prime use of the LVLH mode is during orbit
maintenance. The RCS engines are located only on one end of the module g
string, thus for Hohmannorbit transfers the station needs to fly in a earth
fixed mode. There also may.be user requirements that can be easily met with
an earth fixed flight mode.

In the solar inertial flight mode, the Delta flies with its Y principal axes
perpendicular to the orbit plane (see figure 3.3.3.2-1) and with the solar
array aligned to minimize § cosine power loss by rotation about the
Y-principal axis. The solar array size is increased to account for @ cosine
loss. The mass properties of the Delta growth result in a principal axes that
is approximately 24° from the plane of the solar array, and the mass
properties of the Delta IOC results in a principal axes that is approximately
20° from the plane of the solar array. The Delta flight orientation yaws 180°
every sun season (every time the sun crosses the plane of the equator-twice a
year to maximize power generation.

The Delta can also fly in an earth fixed (see figure 3.3.3.2-2) LVLH mode
rolled to correct the solar B misalignment. In this flight mode, the Delta is
pitched in the orbit plane to achieve a TEA. The CMG's c .atrcl the resulting

cycle torque disturbances. This mode is used for orbit maintenance since the

RCS engines are co-located on one side of the Delta.
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3.3.3.2.2 0n-Orbit Jisturbance - Gravity Gradient

Operation in low earth orbit (270 NM) provides exposure to significant gravity
gradient disturbances. These are on the order of 70-foot-pounds for the Delta
Space Station. While relatively insignificant from a controllability point of
view, the extreme time span of the Space Station mission makes these
significant drives for "cost-of-ownership," unless steps are taken to minimize
their influence.

3.3.3.2.3 Aerodynamic Torque Disturbance

in addition to gravity gradient torques, the aerodynamic torques can produce
secular momentum accumulation. Detailed simulation of the aerodynamic
disturbances for the Delta configuration has been conducted. However, :he
asymmetric effect of the diurnal atmosphere variation has been neglected for
this analysis. In the earth fixed mode, the large areas of the solar arrays
are never directly exposed to the free molecular flow particule velocity f»or

the Delta, hence, only effects of the modules and truss edges are involved.
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perpendicular to Orbit Plane

Orbit Plane

Figure 3.3.3.2-2 Delta Flight Orieatation - Solar Inertial




o ..

3.3.3.2.4 Mass Properties Management

A mass properties management scheme must be employed in the Space Station

design in order to enhance the flight performance.

Adjust Delta mass properties such that the Iy

20° from the plane of the solar array.

both the IOC and growth stages are shown below:

IXXpP
IYYP

1z2zp

Wgt

* Euler angles, rotate from geometric axes to pr

order 0 , O
X

IZZP are the principal inertias.

y principal axes is approximately

The mass properties for the Delta in

10C
1.6 E 7
1.7E 7
1T E 7

21.8°

22.3

258.6K

GROWTH
2.82 E 7
8.32 E 7
6.96 E 7
23.9°
-.95°

oo

slug-ft2
slug-ft2

slug-ft2

ft
ft
fr

1bs

incipal axes with rotation

and Oz. Rx’ Ry’ and Rz are center of mass vector.

IXXp, IYYP,
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3.3.3.2.5 Momentum Storage Requirements

Momentum storage requirements are based upon the peak cyclic momentum
variations, and the attitude control system philosophy regarding the amounr of
reliance on the CMG's for attitude maneuvers and absorption of large impulsive
disturbances (i.e, max between CMG torque impulse). Peak cyclic momentum
ftorage due to the gravity gradient is presented below.

Jue to the time available for this study, the momentum storage requirements

was sized only for the nominal flight conditions involving attitude hold.

PEAK CYCLIC GRAVITY GRADIENT MOMENTUM (FT-LB-SEC)

Flight Delta

Mode I0C Growth
Inertial 9,000 36,000
Earth Fixed 13,000 25,000

3.3.3.2.6 Orbital Maintenance Impulse Requirements

Orbital maintenance impulse was determined using the NASA neutral atmosphere
(SP-8021) density at 270 NM and average aerodynamic properties to compute the
drag impulse. The NASA neutral atmosphere is considered to be the worst
long~term atmosphere applicable to a 90-day resupply cycle. Short term
maximum conditions should be used for RCS engine magnitude sizing,

The disturbance simulation used a dynamic pressure of .99905E-6 1b/fe?,

Summary results for the three configurations are shown below:
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DRAG IMPULSE PER ORBIT

(LB-SEC/ORBIT)

Configuration Delta

Flight Mode I0C Growth
Inertial 240 385
Earth Fixed 120 120

Using the data shown above worst case resupply propellant for altitude
maintenance was calculated and reported in the table below. This assumes that
the orbit is not allowed to deviate from 270 NM,
90-DAY RESUPPLY PROPELLANT FOR ALTITUDE MAINTENANCE
FOR 270 NM

LBS - (Ncrmalized to: 1Isp = 220 sec)

Configuration Delta

Flight Mode 10C Growth
Inertial 1,500 2,900
Earth Fixed 750 750

3.3.3.2.7 RCS Firing Frequency

Detailed flight dynamic simulations of the Delta configuration shows that the
Delta configuration can be trimmed so that there is no secular torque momentum
accunmulation per orbit. Thus, no RCS firing are required for CMG
desaturation. The Delta configuration can achieve a minimal RCS altitude
maintenance firing frequency of once every 90-days chosen to coincide with STS
resupply. This will be particularly attractive to long term low "g"

scientific experiments and manufacturing processes. Altitude loss will be

less than seven miles in 90-days.
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3.3.3.2.8 Results of On-Orbit Flight Dynamics for Delta IOC

The results of the on-orbit flight dynamics ~f the Delta IOC solar inertial
mode are shown in figures 3.3.3.2-3 through 3.3.3.2-8. Figure 3.3.3,2-3
inertial torque impulse history of the Delta-I0C for one orbit. The torque
impulse curves show no secular components at the end of an orbit. The cyclic
momentun storage requirement is 2,000 ft-lbs-sec. Figures 3.3.3.2-4 shows the
resultant aero force drag impulse history for one orbit. The total drag

impulse per orbit is 240 sec. Figure 3.3.3.2-5 shows the resultant drag force

history which peaks at about .05% 1bs. Figure 3.3.3.2-6 shows the gravity
gradient torque history which peaks at 15 ft-lbs. Figure 3.2,3.2-7 shows the
aerodynamic torque history which has a peak pitch torque of 4.3 ft-1bs.

Figure 3.3.3.2-8 shows the resultant torque history which has a peak pitch

torque of 19.5 ft-1bs.

3.3.3.2.9 Results of On-Orbit Flight Dyuamic for Solar Inertial Flight Mode

The results of the on-orbit flight dynamic of the Delta I0C solar inertial
mode are shown in fiugres 3.3.3.2-9 through 3.3.3.2-14. Figure 3.3.3.2-9
shows inertial torque impulse 'istory of the Delta growth for one orbit. The
cylic momentum storage requirement is 36,000 ft-1bs secs. Figure 3.3.3.2-10
shows the resultant aero drag impulse history for one orbit. The total drag
impulse per orbit is 380 sec. Figure 3.3.3.2-11 shows the resultant drag
force history which peaks at about 0.1 1lbs. Figure 3.3.3.2-12 shows the
gravity gradient torque history which peaks at 70 ft-1bs. Figure 3.3.3.2-13
shows the aerodynamic torque history which has a peak pitch torque of 8.0

ft-1bs. Figure 3.3,3.2-14 shows the resultant torque history which has a peak

pitch torque of 76.0 ft~1bs.

203




£10318TH BWJ] UOFILTNWNDIDY WNJIUBWOK BITA] €£-Z2°C'€°E 9andyy

€861 ‘L 980 38.MNNS 98]

PR

JRIGINAL F.

‘A3d NI NOILISOd L1840
i 01 60 80 L0 90 SO ¥0 €0 0 10

—tls St jo.o
-

J33S-81-14 SIXY Z 300D 8 LHM 3ISWNAN 3N0N¥OL IVILY3NI VIOl =~ €
035-~81-1J SiIXY A HOOD 8 1¥M IS 3NOHOL IVIAINI WI0L =T
J3S-87-14 SIXVY X ¥0O0D

8 13M 3ISNINI 3NOUOL TVIIEINI vi0L = |
NI

oe

IV ILE3INI

HVIOS'NI¥d LV V1130'G'ZZ—=NNS'0="T0N1'0017130

00
0'0Z-
1 " o'cl-
.N opno
b ! \
) b \ i} “Ol—
< : oo
o ! \ X )
. ! \ 4
o ¢ s ’
O 3 ! H
- = Y * ~ oG-
» AT Nl Sl
... , | : l.. 1f/ |
P \ ) ) 4 /..
Nn& \ . . K ’ AX)

Ots

| TS & 1

-

204




£1038TH 3wy asTndu)y 3wig drwmeuipoiay H0I-e3Taq ¥-2°€°¢ ¢ Lan3dyy

ORIGINAL PAGE {9
OF POOR QUALITY

£86L 'L 200 seunyonng 983

‘A3¥ NI NOILISOd 11840
1 01 60 80 L0 90 SO Y0 €0 Z0 10 o0

/]

by 00S

00

\

- o 000t

\\\\\ 006t
\\\\\ 0002

< 0052

0'00f
335-81 ISNdAL 30804 OYIVY = |
ON3031

IVILE3NI ¥VIOS'NIgd LV v1130°'S'¢Z¢—=NNS'0=TON!'D01733

Pt - e -

2
o
N




£10318TH 2w}l ¥%104 Beig oyweulpoaay [eIOL DOI-BI[AA S-Z°€°€°€ Indy4

ORICINAL &

€86 ‘L 290 304n30nAS 953
‘A3d NI NOILISOd L1980 -

3} ol 60 80 L0 90 S0 *0 £0 0 0 00
G100
\>/ >/ 0Z0'0
\ SZo0
0£00
St£oo

m \ Y 0¢00
S
a

& { / / $$0°0

7 0S0'0

GS0'0

SE1-20M04 OVNG ON3IY INVINSI = |
N33
IVILYINT ¥VIOS'NIYd 1V V113Q'G'2Z2—=NNS'0=1ONI'D01730

206

2



£1038TH awfl anbiol Ju~)pery L3fARIN Te30l J0I~e3120 9-7°€°g°€ 3andyy
C86L ‘L 980 se.unIdnnS 983

‘A3d NI NOILISOd L1830
L 0l 60 80 L0 90 S0 0 €0

207

0 o 00

00Z-

0'l- : B
o
00oL-
. |
e 0oc-
. " - s
! 8 I .
L | ..
L. oy ,? 00 "
~ o N
<« ..mw n\ :
‘ m Q. N Oﬂ )
X ;
o Ne} :
> ool
oGl
002

SE7 ~14 INOUOL ALIAVYD SS Z=

SE1 —14 INOUOL ALIAYYD S'S A=

SE8Y ~14 NOYOL ALIAVYD S'S X =
(¢ JX DX ]

£
4
3

IVILY3INT dVIOS'NINd LY VI130'G°2Z—=NNS'0="1INI1'201130




£1038Ty 2wyl arbioy dyuemipoiay D0I-®8IT3Q [-T'€°E°¢E aan3d1y

€86l 'L 20Q $0.M3NANS $53

"A3¥ NI NOILISOd 11840
" 01 60 80 L0 90 €0 ¥0 €0 ZTO 10 00

. A ) o.*l.

.
-

—4

W

-'. attlnﬂ “

lv/ 0Z-

e s
..._.
¥ < + 00
58 \ < ‘lfnﬂﬂ/
c rﬁw 9 ’
5 . / \ 0z

: oy

09

S -14 3NDNOL ON3IY 35 Z=§

$87 -11 3N0HOL OU3IY $5 A=2

$871 —-14 INDYOL 083IY 'S'S X= |
ON3931

IWILN3INI H¥VIOS'NIY¥d 1V VL130'6'2Z2—=NNS'0=10N1'00i13Q

208




£103s7p suwyy anbaoy 20U¥qQIN3IeFQ TPuUIIIXZ T®IOL J(I-®IT3Q 8-7°C°f°f 2indyg
£86L ‘L 200 seunianing 983

OR!Cur

wb Ll

, ‘AJd NI NOILISOd 11840
ti 01 60

80 L0 90 6’0 ¥0 £0 (ALY I'0 00
- 00z~
.‘\nno'o
\ 0'sl-
.s\ '. ..-. -ﬁ
~> '- \ a. . O.OF'
.bb '-' .-Q "
N H .~ \ .
¥ F 7 Y -0'S-
. Ve ‘ ; \ h\
Ve N ‘#‘..\ll - ‘ Y :
T mﬂ.. - BT B S 1A o 00
Y ) - H Ihd ° 1
‘ ...‘UY ... ... w r..[J ; b
x 4 - . 106
O N -. -. .. ..
Q \ N \ A
Q. 3 J y ! .
“ \ - - 001
0 ..- .- N o
% + oSt
—“0 hb...
0'0Z
- 0'Ge
S81-14 ‘MOOQ TVILNINI LHM INOMOL=-Z VIO =€
S81-14 'WO0O TIVILYINI L¥M 3NONOL~A VIOl = 2
SH1-14 'Y00J TIVILYINI LHM INDUOL-X WOl = {
GN3037
IVILY3NT YVIOS'NIdd

1V v1130°6°Z2Z—-=NNS'0=1ON1'D0113Q

ol e e ¥ g€

209




£1038TR W] UOTIBTNENDIDY WNIUSMON HIMOWO-BITAA 6-Z°C°C°f 91n8T4
€86 ‘'S J9Q seunIdNNS 953
‘A3d NI NOILISOd 11840
i ol 60 80 L0 90 S0 0 £0 0 1'0 00
Ot
T | | T
.~. ...- N =)
~.s Y \ A
Z .\ L \o
-.’ \ --- —-— )
.. \ \ ..~ -— \
» /ﬁ .- o-4 / .
W EVAEERR
L N f ! )
1 -—_ .~. p
A 4 .. ’ -—
.ku.h O .- -- .—
L Q v +- -
i Y ! \
S . ._ ¢ ..
2 MP \ (4 4
- R 5
K ... ..'
ooo .Q .v
X1 3
.4 ..--
0L
08 =
93S-8)-14 SIAV 2 ¥O0D 8 L¥A ISINAN INDNOL IVILYIN! WIOL =€ Ov
235-81-14 SIXY A ¥00D 8 L¥M ISNINI 3NDNOL IVININI WVI0L=2
93S-6114 SIXVY X ¥OOD 8 1HM ISTNdNI 3NDHOL IVIIYINI WViOi= 1
ON3ON
IV ILY3NI

YVIOS'NIdd IV VI13Q'TS—=NNS'0'0=T1ONI'MO¥9 130

(&
—
N




211

£1038TH owyl asynduy Seaq dTmeudpoiay HIMOYH-eITQ 0l~2°¢°¢g°¢ @andg

R S T

£O6L 'S deqQ seunyoNNS 953
‘AJd NI NOILISOd 11830
§3 Of 60 80 (L0 90 60 %0 ¢0 20 o 00
00
0'0% ‘
\R\. 000t v,.,.
\.\ 74 0'0Gi ,. .
2 ] 0'00Z 5
i _
X
LG 0'0SZ "
7 \\ _.
zZ R . w
g & y 0°00¢ “
35 \ :
\ 0°0S¢§ :
— \ 0'00%
0'0SY
J3S-87 ISNIM DUOI O¥IVY = |
ON3OIN
AVILE3NT dVIOS'NINd 1Y VY1130'2S—=NNS‘'0'0="12N1'MO¥9 130
1 .

\ .
) EETERTEIN P " BT — wﬂ




£1018TH dWY) 30104 Beiq OTWRUAPOIIY TRIOL HIMONO-®ITA] [1-Z°€°€°€ 2indyy

£86L 'S 900 s8uMINNS 953
‘A3 NI NO!LISOd L1840
1. 01 60 80 L0 90 60 #0 €0 2TO0 0O 00
- 000

> > > oo

, , - \
"\ \

900

~]
ha———

;u'\ Lo
—
—

OF P
/

\ \ 800

/ 4

—p B

(AN

SET=30H04 OVHQ OYIY LINVIMNSRY = |
N3O

TWILY3INI dVIOS'NIY¥d LV VL13Q'2S—=NNS'0'0=T0N!'MO¥913a

o~
—
N



£1038TH awy] anbiol oyuemdpo.ay 50I-24d
€861 'L 200 $0.MdNNS 9S3

eI1-2°€°€'€ 34nby

‘A3Y NI

NOILISOd 11840

't 00

80—

L0-

90~

;"21

S'0-

if.‘!‘:‘xL

yO-

OF PCOR QUAL:,Y

CKiv

L]

L, o

00

$871 ~L4 INCHOL OY3IV
S81 -14 INOHOL OxIY
S87 =13 INDHOL O¥IVY

e

S3IXV CA 31IVY 8Y0'0=AVYYV'TS—=NNS'0'0="T0NI'9-00S

*‘Ew!? Av i W

RO T BT I PR I T iy T T (O AR

3

21




Xt

S 2=t
S A=l
S87 ~14 3NDHOL ALIAVHOD 'S'S X = |

ON303Y

410387y smyy anbioy 3uarpeis £37ARIY [®IOL HIMOWO-¥ITSA CI-7°C € € 2anByg
£86L ‘G 20Q se.nianns 9§53
‘’A3Y NI NOILISOd 118¥0
1 0v 60 80 £0 90 S0 %0 €0 Z0 I'0 00
0'08-
; F i 0°09-
z R e
] ; T
\ H X2 R do-40 %
| <\ 7 NG 7 NG
. N K AR 0 v °°N|
. lﬁ A Y \ H ‘. n b B
+ 4 $ + + — + + + . 00
C W * 2 \.w |ﬂ
O ' H 1 ‘.
O «/ \ ../ /;
CQ TN P N 71+ ooc
rw. \ z,/\n : .._. «ﬂ./..\\ ....
\ 3 \ 3 i
¢.. m .o- .. OO'
..‘ N ._. ...
— e 009
008
S8Y ~14 INDYOL ALIAVYD S
S87 =14 3NOHOL ALIAVYD 'S

IVILYINT dVI0S'NIYd 1V V1130'2S—=NNS'0°0="T1INI'MO¥9 130

214




£1038Ty suwjl 9nbioy ojweufporay HIMO¥I-®IT2Q E€1-T°E€°EL°E an31d

€86 ‘G 20C se.mdnNANS 53

"A3¥ NI NOILISOd 118¥0
(1 o1 60 €0 ¢0 90 60 0 €0 2O 0 00

o0l—-
n~\ lono
; 1
£ ~ 0's-
[ ..
" \.'f/ .-. ...
N N ...‘ ! ...
N N \..N\ \J/ 4 ..“
-\.- a.' / h ... A .-..~
\ ‘ S .
: - - > 00
J // ... s v ....,. ...
) o ~ \\ ... N .
eﬁ.b Ar# — "~ 1 S ;\
k B .T\
e - 0’
a.oo \s
” "\N

ool

$871 ~14 INOYOL OHIVY 'SS Z=¢

S@71 —14 3NOHOL O¥3IY SS A=T

87 -14 INOYOL O¥3I¥Y 'SS X= |

ON3231

IVILYINI ¥VIOS'NIY¥d 1V V113Q'ZS—=NNS'0°'0=TON!"MO¥O 130

215



6 y
K1038TH euyy anbioj adueqanisyg [BUI33IXY TBIOL HIMONO-BIT(U Y[-Z'€°€°¢ 2andg ~ ; A
86, ‘S 20Q seunionng 953 i
‘A3Y NI NOILISOd 11830 |
4L o' 60 80 L0 90 c0 ¥0 €0 Z0 i'0 00
0’001~
.~. Y 008- .
A : 1 009- .
! . : £ 1 ooy- . m
7 7 ? T ooz- .
3 3 4 | | ! ; |
S s s o= —aea SR ’ =K - oo .
5% v - i 00z
._. ...~ .... .... A
-. .-N _-4_ b oov
s - 009
_.. .\- .-.' \.
: 008
S81~14 ‘HOOD IVILNINI L¥M 3N0CHOL-Z WIOL= T
S871-1J 'HOOD IVILYINI LYN 3INDHOL-A WIOL=C
SET1-L4 'HOCD WILYINI LHM INOHOL-X VIOl = |
aNION
TVILY3INT MVIOS'NING LV V113Q'2S—=NNS'0'0="T10N1'M0OY9 13Q




£10318TH @wWy] uofIeTNERIIY UNJUIWON HIMOWO-BIT3Q GI-Z°g*€°f 2andyg

{86 ‘S 20Q $0.n30nJ1S 953

‘A3d NI NOILISOd L18Y0
it o1 60 80 L0 90 SO ¥0 €0 0 10 00

217

o'y

\\ / xu\ltl:../ oc-
/ \\ N\ // -
AN

\

\
<
/

i B e =% 00
o Y :'. \\\
. L X - :
.‘..i» Q. ~ Q / N-; \ s\.( O—
e 0 . .
O Fm {) Ge / f- \ \-s
(P TS = - 02z
0o AN %
1—"\ AQ\
% < 0¢
%T o'y

oS
II5-81-12 SIXY 7 ¥OOD 8 L1¥M ISV INDUOL WIHYUINI WIDL =€
J3S-81-14 SIXY A ¥00D 8 i{um ISNANL 3NOHOL TVILUINI VIO = 2
23S-81-14 SIXY X #4000 8 Eﬁzwww._g_ INDNOL IVILYUINI WYI0L = |

Ol

03X14d H1YVI'0 1v VI130'G°'22-=NNS'S'8Z="10NI1'M0O¥9 130

b PO ¥ B hae” Saul &
o v st e st




L1038y asumyl asTndwy Bel1q d2TWRUAPOIIY HIMOUD-BITA 91-7°€°€"¢ 2and¥d

7Y

ORIGINAL Pil s

~NR QUALI

£86L 'S 290 194MNAS ¥S3
‘A34 NI NOILISOd 118¥0

1 01 60 80 Lo 9'0 S0 *0 €0 0 1'0

J

00

00

pd

A

002
r4

ooy

009

008

o'o0

oozt

GNIOIN

935-871 SN IDY04 DdIve= |

oot

Q3X14 HLYv3'0 1V v1130'S'22-=NNS'S'8Z==12N1'MO4d9 130

218

L
|
;
3
.

R

P



3.3.3.2-10 Results of the Cn-Orbit Flight Dynamics of the Delta Growth Farth

Fixed Flight Mode (LVLH

The TEA flight condition was achieved for the Delta by flying the Delta at
different pitch attitudes and iterating to a resulting equilibrium cordition.
The results of the on-orbit flight dynamics are shown figures ¥ 3,3.2-15
through 3.3.3.2-16. The torque impulse cuive shown in figure 3.3.32~15 shows
no secular components at the end of an orbit. The cyclic momentum storage
requirement is 25,000 ft-lb-sec. The aerodynamic drag impulse is shown in
figure 3.3.3.2-16 and is 120 lbs-seconds per orbit. The gravity gradient
torque vector with respect to the body axes is a constant equal to (20.5,
-1.77, 2-ft-sec) ft-lbs. The aerodynamic torque vector with respect to the

body axes is constant and equal to (-17, -1.48, .05) ft-1bs.

3.3.3.2.11 Structural Dynamics and Control

Finite element modeling was used to analyze the truss and module structure of
the Delta Space Station concept (figure 3.3.3.2-17). The triangle
configuration utilizes the stiffness benefits of the truss coupled with the
inherent structural stabiiity of the three bar link. The solar inertial
pointing array guarantees that the natural frequency penalties caused by
excessive array areas are minimized. These features result in a first mode
frequency (array bending) of 4 Hz. The module placement allows for multiple
attachment to the truss along the entire length of the module structure,
increasing module flex frequencies.

A single axis rigid body controller was designed and analyzed for the Delta
Space Station. Vehicle dynamics were modeled using the largest rotational
inertia properties. A second order model for the CDG's and angular rate was
assumed. The resulting closed loop system has nearly critically damped

CMG/rate poles near the open loop values, Frequency analysis was accomplished




o
N
o~

uojlelg adeds ITBUBTIAL Syl JO [IPOH IUBWATF IIFUTS [I-7°€°€°¢ danByd o
wn:
g

In
NANTN
KAV

s
S
-

bt
<

Ly,
NN
IR
;“}:‘[‘
RN RN
s“l.“"é

AR
.r,s-..sb
‘.. .c.. s..sbﬂ
\/
KX é e fé..sb‘
S

[
N
‘I
N

!

\y,

[N
N
4

/
Ay

NN\
“,A\
"l NN x‘,
AV IK
Ia

...,s.é. i,
1 oﬂ 1 ‘ .1>v c
‘ p X W RO :..B
o& os ssoo.d _ .< <v u
\““.......‘..s..‘ Ry o
.d-s» ‘s.ss ‘qos“.»‘
,, .w si. RO .... XN
_ ...é.é. s s s.,
,,.. ‘ X ‘
v . ‘ s

TN\

s

~




‘ using the Bode plot. The Delta exhibited time response faster than the

B Streamlined "T", but slower than the BB Configuration. The time performance
is directly accountable to the rotational inertia employed in the vehicle
dynamics mcdel. The frequency response indicates controller authority to 0.4

- Hz. The flex analysis shows the first flex mode at 4 Hz giving this system an

order of magnitude separation between controller passband and structural

dynamics. These results indicate that simple rigid body control system

designs may suffice for the Delta configuration.

S AREr

The structural dynamics of the Delta Space Station during intermediate buildup

stages was not analyzed at this time. The triangle, with its single launch
truss system, is a dynamically stable configuration during the construction

phase. Similar to the "TI" concept, once the truss is in place, the addition

m’"l (AR ALl BN BN

of modules will not degrade the system dynamic response.

The results of this study indicate the advantages of truss systems as the

primary structure of Space Stations. The trusses allow a stable platform of

large dimension while retaining adequate dynamic characteristics. The

triangle demconstrated the highest natural frequency and structural stability

of the three configurations studied.

The relative flexibilities of various station concepts are analyzed because of

its known impact on system maneuvering performance and attitude control

i capability. These are not the only flexibility concerns on the station

system. Experiments that require pointing accuracy will require isolation

systems that are impacted by system flexibility; the more flexible the

platform (Space Station), the more demanding the requirements of the

isolation. In addition, for experiments in large flexible space structures

(antennas, etc.), the more flexible the test platform, the more complicated the

experiment since test article math models must include high order models of




the platform.

3.3.3.2-12 Summary of On-Orbit Flight Dynamics

The flight dynamics of the three proposed Delta configurations have been
studied in detail for two flight modes:

1. Solar inertial attitude hold

2. Earth fixed (LVLH) attitude hold
Using mass properties management to control the system inertias and TEA trim
adjustment, the momentum accumulation can be reduced to zeroc for both flight
modes. Propellant resupply weight of up to 2,400 lbs. for orbit maintenance
does not seem to be a critical item.
From the structural dynamics standpoint, the triangle concept is clearly the
most dynamically efficient Space.S:ation candidate. The triangle possesses a

substantial stiffness .cruss) and minimal array size and weight.

3.3.3.3 Communications Evaluation

The communication subsystem consists of hardware required to establish
communication links between the Space Station and various vehicles. Antenna
requirements for the subsystem are essentially the sum total of those
requirements developed by considering each link separately. In this
subsection, we will develop antenna specifications for the delta truss
configuration by sequentially describing each operating link. Information on
RF coverage, number of required antennas, type, makeup and size of these
antennas, and their estimated locations on the Space Station structure are
given. Also, the ease of procurement or development of such antennas is
discussed.

The delta truss configuration rotates to keep one face always pointing toward

the sun. In its local coordinate system, the coverage associated with each
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link is for all practical purposes, a full sphere. This wide coverage 1is in

contrast to the limited one that usually results in the configurations which
are gravity gradient stabilizeds. Hence, the number of antennas required to
serve a given link in the delta truss would be larger than that required to
serve the same link in the other two configurations because we simply have a
lot more space to cover. However, to reduce the number of antennas on the
Delta truss, it may be pcssible to use the more complex conformal arrays with
spherical geometry which may also require special mounting techniques
depending on their location on the Space Station. Alternatively, if a
stabilized platform is provided with the delta truss, be used for the mounting
of antennas, then the number of antennas may be reduced.

In the following discussion of "individual links operating with the delta
truss, the coverage is assumed spherical on every link and thus, antennas are
specified accordingly. The antenna design selected for this configuration to
meet each required link coverage was based on studies that have been completed
to date. Further study and evaluation could dictate alternative options that
might be more advantageous based on numbers of antennas required and
development risks.

A summary of the antenna requirements for the Delta truss is given in Table
3.3.3.3-1. The antenna locations for the IOC and growth Delta truss
configuration is shown in figures 2.3-1 and 2.3-2,

a. Space Shuttle Orbter (SSO) link - This is a S-band link that supports

two-way communication be.ween the Space Station and the Space Shuttle Orbiter.
Only one SSO is supported in IOC and two SSO's are supported in the growth

version.
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The link is to served by three medium gain (30 dB) phased array

antennas. Each array is made up of about 500 elements and measures about 10
feet in diameter. Two antennas are located on the vertex lines running from
the front triangle to the back triangle. A third antenna is located on the
underside of the habitat module.

The procurement of these antennas represent routine design and

development effort if the arrays are passive (electronics separate from

antenna elements). However, some risk is introduced in the development if the

arrays are active with monolithic design (electronics combined with the

antenna elements in one package),

b. Multiple access (MA) link ~ This is a K-band 1iﬁk that support
two-vay communication between the Space Station and the EMU, FF, and OMV
vehicles. .

Three high gain {41 dB) multibeam phased array antennas made up of
about 16,000 elements and measuring about 28 inches in diameter each will
provide the required spherical coverage. They are located on the Space
Station as follows. Two antennas are positiona2d along the vertex lines
running from front triangle to the back triangle next to the solar array. A
third antenna is located on the underside of the command/control module.

The above specification for the three high gain antennas assumed an
operating frequency in the K -band at about 28 GHz. There wiil be medium
amount of risk associated with the development of such a large array antenna
(16,000 elements) in the passive mode. The risk becomes high if the array
design is active and monolithic. The design difficulty can be reduced
considerably by moving to a lower frequency like Ku-band where an array size

of about 1,000 elements will be sufficie:t due to lower antenna gain (30 dB)

and higher antenna efficiency.




¢. Tracking and Data Relay Satellite (TDRS) 1ink - Thig is a dual

S/Ku-band 1ink that Supports two-way communication between the Space Station
and the TDRS satellite.

The 1link to be served with three dual-feed, dual-frequency
mechanically steerable parabolic reflectors of nine feet diameter. Two dishes
are located along the vertex lipes connecting front and back triangles and

adjacent to the solar array. The third dish is located on the underside of

the habitat module #1.

d. TV links to FF's and OMV's — These are independent Ku-band links
relaying digital TV signals from the FF's and OMV's back to the Space Station.
Two links are needed in the I0C stage (6 antennas) increasing to six links in
the growth stage (18 antennas). The coverage on each link will be a 20° cone
out to 2,000 km for far range coverage and a hemisphere below the station
extending 50 km.

Each link can best pe served by high gain conformal phased arrays to
obtain a spherical coverage with minimum number of antennas. Each array will
have a diameter of about four feet. The antennas for the first three TV links
are spaced along the sides of the front triangle; those for the last three TV
links are spaced along the sides of the back triangle,

The antenna arrays for these TV links represent high risk
development items due to the large number of elements that would be involved
in the design.

e. Orbital Trangfer Vehicle (OTV) 1link - This is a K-band link

Supporting two-way communication with the OTV in the growth configuration
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only. The coverage is a full sphere with a maximum radius of 100 km.

The link can be served by a group of three medium gain phased array
antennas each covering one-third of the sphere. The size of each array is 400
elements at Ka-band frequency and measures about five inches in diameter. The
placement of these antennas on the Space Station i1s as follows: two antennas
are located along the vertex lines connecting frent wnd back triangles on
either side of the solar array. The third antenna is located on the underside
of the lab module (the one adjacent to the habitat module).

The development of the three array antennas presents no risk if the
array 1is passive. Minimum risk results if the array is active.

f. Tracking Links

Four links will be used to pfovide Space Station position and attitude
information, and to provide relative position and velocity information on
other Space Colony vehicles and objects within specified volumes of concern.
The Global Positioning System (GPS) Satellite Constellation Link is an L-band
receive-only navigation and tracking link. The Space Station GPS antenna must
be able to receive code tracking information from a group of four satellites
simultaneously. The antenna coverage consists of a 160° cone centered about
the Space Station local vertical?’

The link would be satisfactorily served by a low gain
omnidirectional antenna. This antenna must be mounted on the Space Station in
such a way that most of the upper hemisphere is clearly visible. On this
configuration, 1t is mounted on the left solar panel boom.

Procurement of such an antenna is routine, and there is no

development risk involved.
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A Shuttle Rendezvous Radar link will be completed by a transponder

onboard the Space Station. Two transponders and two vwnidirectional antennas

will be used for this link.

Rendezvous radar links will be used to maintain continuous position
and velocity data on vehicles that are approaching the Space Station during
the implementation of flight plans which involve docking. Similar position
and velocity data will be provided for vehicles that are departing, and are
within a specified range of concern. Two antennas, directed force and aft
along the velocity vector, will be used for this function: each antenna is
expected to be approximately three feet in diameter.

Multiple vehicle tracking will be accomplished by Search and Track
Radars which will maintain updated position information on vehicles at
distances as great as 2,000 km. A minimum of five antennas will be used for
this purpose, to provide coverage of the fore and aft directions along the
velocity vector. A maximum of four antennas will be used to provide complete

Coverage of a specified volume around the Space Station.

3.3.3.4 Elements/Utilities Interfaces and Mechanisms Evaluation

3.3.3.4.1 General

The central scructural element of the delta truss configuration is the open
triangular structure formed by jcining three flat tetratruss platforms. The
modules, solar arrays, radiators, servicing facilities, utilities and other
elements are attached to the truss structure. The modules are joined using

the structural and mechanical elements of the berthing interface mechanism as
described for the building block configuration, but the proximity of the truss

Structure to the modules offers options on routing of utilities.

Much of the mechanical systems and interface study effort has focused on
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assembly of major station elements and on concepts for utilities wiring and
plumbing. A major objective is to develop concepts which are compatible with
manipulator operacions and minimize EVA requirements. In some cases, more
detailed design activity will be required to fully establish practical levels
of manipulator versus EVA operations., For example, concepts for placement of
station electrical wiring using the manipulator appear practical, but limited
use of EVA for mating of connectors may avert the need for development of
sophisticated mechanisms for that limited purpose. There is a need for more
specific trade studies of EVA versus manipulator activities as well as
continued evaluation of manipulator capability and complexity of manipulator

operations versus capability of assembly mechanisms.

3.3.3.4.2 Berthing Mechanism

Berthing involves use of a manipulator to achieve fina! closure of two
spacecraft or assembly elements, thereby insuring relatively small
misalignments and contact velocities. Contact energy attenuation requirements
are lov and alignment guides are shorter than would be requirec for docking
operations. The berthing interface comprises alignment guides, structural
latches, a telescoping pressure tunnel, retract/extend actuators, utilities
interconnect provisions and supporting structure. See figure 3.3.3.4-1. Note
that the delta configuration incorporates three guides to provide 120°
indexing for station elements. Guide length of 5.75" will accommodate
expected misalignments for berthing operations. The manipulator, aided by the
alignment guides and other sensors as required, brings the interfaces within
the envelope of the combined capture/structural latches. Operation of these
six latches, located on the alignment guides. completes the structural mating
of the interface. The structural latches are sized to carry the full pressure

load and all dynamically induced .oads across the interface. Within the 15"
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__ CAPTURE LATCHES

L POTENTIAL UTILITY INTERCONNECT LOCATICN

’_‘,__~ 55" DIA ]

4" GUIDE HEIGHT

L e CEy !

’

_{[—lr ) —
9" RETRACTED n L 15" EXTENDED
—— 70" DIA.

FIGURE 3.3.3.4-1 THREE GUIDE BERTHING INTERFACE
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length of the berthing mechanism, a 6" stroke of the mating interface will be
provided by three pairs of electromechanical actuators. After structural
mating is accomplished, these actuators will be fully extended.

The telescoping pressure tunnel, shown in figure 3.3.3.4-2, is extended by
independent small electromechanical actuators. The tunnel concept
incorporates redundant pressure seals and a complete set of tunnel elements
may be extended from either side of the interface.

Truss mounting of the modules may greatly modify the requirements for the
berthing interface. If modules can be berthed first to the truss attachment
structure, the module to module interface can be simplified. Further, the
truss attachment may reduce the loads across the berthing interface, thereby
reducing structural requirements. These effects could not be evaluated in
sufficient depth to warrant changing the baseline berthing mechanism at this
time.

The size and type of utilities interconnects which must cross the berthing
interface are shown in table 3.3.3.4-1. Utilities may be routed through the
berthing interface in the same manner as for the building block
configurations. Alternately, the close proximity of <h truss stricture
provides the option of installing some utilities busses on the truss

structure, with independent parallel connections to the modules. This is a

parallel structure. The advantage of truss mounting the main supply busses is
that a module may be removed without interrupting service to the remaining
modules. Concepts for truss aounting of the electrical power and thermal

transport busses are described in the following section,
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3.3.3.4.3 Truss Mounted Utilities Interfaces

The solar arrays and Power Conditioning Modules (PCM) are installed on the
upper truss surface. Figure 3.3.3.4-3 illustrates a concept for power
distribution to the various modules. DC power is delivered from the solar
arrays to the PCM's with two pairs of #4 wire with two connectors at each end
as shown. At this point, the power is converted into three phase 400 VAC and
four distribution busses are routed from each PCM down near the base of the
truss structure where the modules are located. These 4 busses are connected
to a main distribution four bus system which is attached to and encircles the
truss structure. Each module is then connected to these main distribution
busses. Each module will contain four distribution busses for redundancy.
Only two busses will be activéted as supply busses at a given time. All
connections within the AC power distribution circuit will be made with
contactless (inductive) connectors. Installation of the power distribution
system need not involve stringing wire. Prior JSC study efforts proposed use
of cable trays which could be attached to the truss elements with simple
push-on clamps. Cable runs longer than the Orbiter PLB could be accommodated
with folding cable tray assemblies. Many details remain to be worked, but
placement of the power distribution system using the manipulator does not
appear impracticai. EVA may be more attractive for connecting the various
elements,

Details of the thermal transport concept are less well developed. Freon fluid
and vapor busses must be connected from the truss mounted radiators to the
various modules. Schematically, the concept is the same as for power
dictribution. Fiuid and vapor lines will be routed from the radiators to main
busses which are attached to and encircle the truss structure near the

locatior of the modules. Each module will be independently connected to the
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main busses, therefore, removal of a module will not interrupt service to the
other modules. A typical module connection arrangement is shown in figure
3.3.3.4-4. Precharged line segments will be mounted to the truss structure
and connected to form the thermal transport system. Use of tubing trays which
easily attach to the truss structure may simplify the placement process but
many connections must be made and verified. Significant EVA, or manipulator

assisted EVA, may be required.

3.3.3.4.4 Element-to-Truss Attachment

Large elements must be attached to the truss structure at the nodes, where
significant loads can be tolerated. The nodes will be designed to accept
quick operating push in (pip pin) connectors and more sophisicated connectors
capable of withstanding higher tensile loading. For low mass items such as
cable trays, simple push on clamps which attach directly to the truss elements
(approximately two-inch diameter tubing) may be adequate.

Each special truss attachment requirement must be worked in detail. Prior JSC
studies identified several practical attachment concepts, including multiple
tripod arrangements for attaching modules (or the OTV). For this study, a
tripod module attachment scheme was evaluated for the purpose of weight
estimation. Four tripods are employed, with each of the 12 legs attached to a
truss node. Four lightweight retention fittings, which interface with the
standard trunnions used to mount the module in the PLB, are attached to the
upper ends of the tripods. Estimated weight for this concept is 0.5Z of the
attached module weight, so an attachment weight penalty of 0.52 of the weight
of all elements attached to the truss was assessed.

The number of nodes available for attachment is quite limited, so detailed
design of attachment concepts will be an important process, and one which may

influence slight modifications in station element placement.
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Certain nodes are exposed in the packaged condition of the truss. These nodes

are ideal for attachment, prior to deployment, of one or more manipulator

grapple fixtures to facilitate assembly.

3.3.3.4.5 Manipulator Systems

The Space Station manipulator will be the standard Orbiter RMS unless further
detailed evaluation of the assembly process establishes the need for greater
reach capability. The RMS shoulder will be mounted to a berthing interface
mechanism modified to accommodate RMS power and ocntrol utilities only.
Through the berthing interface, the manipulator may be stationed at any
available berthing port. A special manipulator berthing port will be mounted
to the side truss structure in optimum position to support station assembly
and to service the OMV hangar. The growth configuration includes two
additional manipulators identical to the first. A second special manipulator
berthing port will be added at the opposite end of the side truss structure in
position to service added hangar elements. The third manipulatu. will be

stationed at a lower berthing port for use in the sateliite servicing area.

3.3.3.4.6 Hangar and Satellite Servicing Mechanisms

The OMV and OTV hangars will be constructed inside the triangular truss
structure. The satellite servicing area, located beneath the modules,
comprises beams attached to the truss structure. The beams, representative of
the Orbiter PLB longerons and keel, will incorporate lightweight Orbiter
payload retention fittings which mate with standard trunnion fittings on large
satellite elements. The OMV and OTV hangars will include similar beam
assembhlies.

Utilities will be brought to the service/storage facilities from the main

utilities busses, as for modules.
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The OMV and OTV hangar doors will be provided with conventional hinge, latch,

and drive mechanisms. The satellite servicing area does not include doors.

3.5.3.5 Thermal Control Ccncept Evaluation

3.3.3.5.1 Introduction

Engineering evaluation considerations during this study were:

o Vehicle thermal environment (i.e., view factors, blockage, heat
fluxes)

o Radiator area requirements

o Orbiter impacts

o Design complexity

o Verification coamplexity

o Surface contamination éensitivity

o Hardware commonality

o Technology status
The following discussions will present a system overview and will assess how

well the delta vehicle configuration satisfies these factors.

3.3.3.5.2 System Overview

The candidate Active Thermal Control Subsystem (ATCS), schematically
illustrated by figure 3.3.3.5-1, is a hybrid design concept that maximizes the
use of local thermal control for individual station modules and satisfies the
remaining thermal control requirements with a centralized system. Each
station module will contain a heat collection and transport system similar in
function to the 3huttle Orbiter cabin design (i.e., a pumping system,
coldplates, heat exchangers, plumbing lines and flow control valves). These

individual station .sdule systems will be integrated with a central transport

239

P A A Y T




31d3du0) wsysAsqgng LO43UO) [ewudy) aALjoy "T-§°E°E°E aunbyy

[}
<
N

«d

[N

e LY
-1 e
O
‘e O
7 Q
x .
i B
40LYINWNIIY
3 a0 @) ¥01¥10vY
4IH10 0L —= 0E] @) 3d1d 1V3H
*193$ 318V LINALSNOD
NOILO3S 03Z1¥NSSI¥d ~=—" SSTYNN IINCOW WIIdAL Y s A "~ 30VdS ,
A 0321 TY4INI)
SN S —— a aImI /
r (dAL) INTYA
| D “ HOSN3S | NOT LY INGOW >
_ | Mo T4
XH
| mwwwmm 30V4¥3INI yoLviavy | | YN
| | 3WnGOW 31N0ON "1W-rao8 | | ;
| ) _ VIIldAL
| O |
. - . .
! aNe) — _‘ ¥35N30N0) —7
$37NAOW ——— WA ——
YIHLO WOYJ

0otk Rk o b a8 b w1 gy it



system. In addition, each station module will have heat pipe space radiators
(operating at about 70°F) integrated with the module meteroid protection
shield. The size of these radiators will vary from module to module depending
on surface area availability considering docking ports, windows, thermal
blockage, etc.

When waste heat in a station module ex -eeds its thermal capacity, the excess
heat will be transferred to a central collection and transport circuit for
delivery to a central truss-mounted deployed radiator attached immediately
above the station modules. A separate high temperature radiator (operating at
about 160°F) will be attached to the truss near the solar array to reject
electrical power system waste heat from the regenerative fuel cells and
electrolysis units. Because the transport circuit (or "thermal bus") uses a
two-phase working fluid that transfers heat by evaporation and condensation
rather than by sensible heat changes of a single phase coclant, it operates at
a constant temperature over the entire length of the loop. Furthermore, this
"thermal bus" is capable of transporting large thermal loads over long
distances with pumping requirements that are very small compared to single
phase fluid systems. Table 3.3.3.5-] summarizes the IOC weight and power
estimates for the candidate ATCS concept.

A vehicle thermal system design which judiciously applies thermal coatings,
vacuum type insulations, isolators, and heaters will be selected for those
systems and elements which are not integrated into the ATCS. The system will
be selected to minimize the addition of electrical heat for thermal control
purposes. The systems which appear to required such a design, at this time,

are the communications (antennas), propulsion remote manipulator, and control
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Table 3.3.3.5-1,

I0C Active Thermal Control
Subsystem Characteristics

WEIGHT (LBS)

STATION ELEMENT DRY WET POWER (kW)
C/Cl 1,345 1,465 0.33
LAB1 2,621 2,945 0.89
LAB2 1,803 2,002 0.52
H.’\B1 2,452 2,591 0.33
LOG1 485 514 0.06
MODULE* 6,113 6,243 0.22
TRUSS
POWER 3,057 3,187 0.16
SYSTEM
TRUSS**

TOTALS 17,876 18,947 2.51

*TRUSS-MOUNTED RADIATORS
ADJACENT TO STATION MODy

**TRUSS-MOUNTED RADIATORS A
ADJACENT TO SOLAR ARRAY

AND ASSOCIATED TRA
LES.

NSPORT SYSTEM LOCATED

ND ASSOCIATED TRANSPORT SYSTEM LOCATED
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moment gyros. Heaters in these systems will eliminate thermostats and their
innherent failure modes by using sensors to feed software logic for heater
control,

An insulation/coating system will be selected for the habitable areas and
power generation systems which compliments the active heat rejection systems.
Insulations and coatings will be applied to unpressurized areas such as the
satellite service Structure, OMV and OTV hangars in order to bound the thermal
environments within the payloads design envelopes thereby minimizing operation
of the payload thermal/control systems and station power requirements.

The solar inertial orientation of the delta configuration and the solar
shading provided »v the solar panels provides an opportunity to apply thermal
surface treatments with the potential for minimal degradation and
refurbishment. Treated metal finishes (alodined or anodized) can be selected
with a wide range of emissivities (0.10 to 0.72) for those surfaces which do
not receive direct solar energy. Some controls and dynamics approaches being
considered will result in long term solar éxposure on portions of the station
elements. These elements, such as the radiators, will Tequire low solar
absorptivity (& ) and high emissivity (€ ) coatings which cannot be achieved
with the treated metals since the absorptivity tends to increase with
emissivity.

The insulation system is envisioned as similar to the high performance
multilayer insulation design applied to the Orbiter vchicle except having as
many as 20 layers of organizally coated aluminized film as opposed to the 10
layers in the Orbiter design. This would result in a weight of approximately
0.25 pounds per square foot including mesh separators, attachments, venting
provisions, and cover material. The insulation weight for the delta I0C and

growth configurations are 5,300 and 12,425 pounds respectively.
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Local protection from RCS engines plume heating will be required. The extent

of the protection and its impact on design will depend on engine firing
requirements,
The propellant tanks of the monopropellant hydrazine propulsion system will be
individually mounted on the command module and each will be maintained within
temperature limits through passive thermal control. For the hot environment,
each tank (3.5 foot diameter) will be maintained below its upper temperature
limit by use of insulation and an appropriate coating. For the cold
environment, each tank and the fuel distribution system will be maintained
above its lower limit by the use of insulation ané heaters. The heater
wattage needed for this purpose is shown in table 3.3.3.5-2.
Preliminary design indicates that the 25 pound thrusters will be placed in '
clusters of 12 thrusters each and will be mounted on the command module next
to the propellant tanks. Passive thermal control of the thrusters and their
feedlines will be achieved through insulation of the cluster and the use of
heaters for the engines and lines. Heater wattage needed is shown in table
3.3.3.5-2,
The thermal control heaters for the propulsion system are sized based on a
50% duty cycle.

TABLE 3.3.3.5-2

PROPULSION SYSTEM HEATER REQUIREMENTS

TANKS & FUEL DISTRIBUTION THRUSTERS & FEEDLINES
CONFIGURATION  # TANKS  TOTAL AREA  HEATERS # THRUSTERS  HGATERS
FT WATTS WATTS
A - 10c 8 308 862 24 960
A\ - GrOWTH 12 462 1293 48 1,920
244




The passive thermal control design of the antennas is similar to that of the
Orbiter Ku-band anterna. Each electronics box will be of minimal thickness
with the electronics mounted directly to a cold plate radiator located on the
large face of the box. The box will be covered with silvered teflon with an
absorptance/emittance (¥/g)= .13/.8 . The radiator area for each electronic

box and internal heat generation for each different type of antenna is skown

in table 3,3.3.5.-3. Also shown in this table is the heater wattage needed in

each electronic package to keep the electronics above their minimum
temperature,

The heater wattage needed to maintain the gyros, gimbals, and comparator of
the S/Ku-band steerable dishes above *heir minimum temperatures are shown also
in table 3.3.3.5-3. The heaters for maintaining minimum temperatures are

sized based on a 50% duty cycle. Antenna heater operation will only occur

when the antenna is off two hours or more.
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3.3.3.5.3 Technical Evaluation

3.3.3.5.3.1 Thermal Environment

The Deita Space Station configuration orbits in an attitude with the solar
array inertially pointed :owards the sun. This results in the majority of the
station structural elements being shaded from the sun by the solar array
throughout the orbit. As a consequence of this, thermal coating performance
(solar absorptance/infrared emittance) of :hese shadead elements need not be
optimal. However, modules and radiators in close Proximity will exchange heat
through radiation so IR optical properties would be tailored to properly
balance the system.

Orbital average incident thermal flux levels at Beta = 0° are shown for the
delta configuration in figure 3.3.3.5.2. Analysis was accomplished at the 0°
Beta due to previous studies having shown that increased Beta angles, up to
52°, .did not appreciably alter incident flux level averages for this
configuration. Quantities for the moaules are indicative of the flux levels
on the areas where body~-mounted radiators would likely be placed; that is, on
50% of the module circumference away froam the trusswork. Fluxes given for the
hangar are for the exposed ends only,

As shown, flux levels on most elements are relatively low, enhancing the
capability for waste heat rejection. However, one command/control module will
have a large amount of incident solar flux impinging on a portion of its
surface, so a low ( /€) thermal coating would be required.

Average form factors to 8pace, using the previously mentioned assumptions, are
shown in figure 3.3.3.5-3. The difference between these factors and a factor
of 1.0 gives an indication of the amount of blockage a surface receives from
other structures. The high view factors indicated in figure 3.3.3,5-3, along

witn low environmental thermal fluxes, imply little blockage and good
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capability for heat rejection to space for exposed radiator areas.

Since body-mounted radiators are assumed to be encompassing only the most
favorable 50% of a module surface, sensitivity to interaction with other
modules and structure is reduced, especially with a "thermos bottle" type
insulation system. Placement of planar radiators on the truss surface implies
single-sided heat rejection, though scme backside heat rejection may be
desirable from the module radiators to maintain the hangar internal
temperature within a required range.

Areas internal to the Delta truss structure will be thermally influenced by
the back surface of the solar array which will be operating at approximately
150°F to 170°F during the sunlit portion of the orbit. The array should cool
to -75°F during the night portion.

During buildup of the delta configuration, the solar arrays should be placed
to shade the modules and deployed radiators from the sun in order to prevent
excessive incident thermal fluxes. If this is done, the 10C and growth

versions of the station should have similar thermal characteristics.

3.3.3.5.3.2 Radiator Areas

Radiator area requirements initially were defined for body-mounted radiators
(integrated with station module meteoroid protective shields) to determine
heat rejection capabilities for each station module. 1Imn general, the
effectiveness of the body-mounted radiators is 2xcellent since blockage from
surrounding vehicle elements is almost nonexistent as discussed in paragraph
3.3.3.5.3.1. However, it was assumed that 50% of the cylindrical station
module wall area was not available for radiators due to interfacing structure
with the truss. As a result, body-mounted radiators reject about 30% of the

station total waste heat as summarized in Table 3.3.3.5-4.
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Truss-mounted one-sided radiator Panels were sized to reject the balance of

the vehicle waste heat not accommodated by the body-mounted radiators. For

I0C, truss-mounted radiators wituy a total radiating area of 3,641 ft2? are

required to reject the balance of the station module heat loads., A separate

set of truss-mounted radiators (operating at about 160°F) are located near the

solar array to provide electrical pover system heat rejection. Area

requirements for the power system radiators are 1,325 ft2?, For the growth

stetion, the truss-mounted radiators for the station modules increase to

6,216 ft? and to 2,639 ft2? for the power system.

The aforementioned radiators were sized to reject the total vehicle waste heat

load. Past studies have shown that the use of a thermal storage phase change

material can further reduce area requirements when large temperature

transients are encountered. These transients normally result from widely

varving environmental heat fluxes and/or internally generated vehicle waste

heat. For this study, the power system radiators were selected to illustrate

the ;otential application of thermal storage.
Because of the difference in day/night times and the difference in
efficivncies between the fuel cell modules and the electrolysis modules, the

night time heat load for the power system is much greater than the day time

heat load. As mentioned, if part of the night time heat can be stored in a

phase change material for rejection during the day time, the power system

radiator area can be reduced further. One candidate for a phase change
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thermal storage material for the regenerative fuel cell heat rejection system
is Barium Hydroxide Octahydérate. Its density is 136 1b/fe3, melting point is
l72°F, and latent heat is 129 btu/1b.

Preliminary analysis shows that the use of 394 1b. of thisg phase change
material would reduce the required remote radiator area by about 50%*.
Required rzdiator area and capability and applied heating loads without and
with thermal storage are shown in figures 3.3.3.5-4 and 3.3.3.5-5
respectively. Although the weight of the phase change naterial and asscciated
hardware will probably be equivalent to the radiator weight reduction, other
design considerations such as view factors and blockage may still favor the
use of thermal storage material. In addition, a thermal storage approach
permits a non-articulated radiator to be a viable station option.

(* Power system waste heat characteristics used in the thermal Storage
evaluation were not the same as ugsed in the final radiator sizes documented

earlier; however, the general conclusions reached and relative savings

demonstrated are valid.)
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3.3.3.5.3.3. Orbiter Thermal Control Impacts

Potential Orbiter thermal design impacts exist for the main landing gear dump
valve and strut actuators for all docked attitudes on the delta configuration,
The Orbiter attitudes are currently constrained to prevent exc.eding the lower
pwerformance limit of -35°F for these components. A preliminary pre-entry
heater design exists which would eliminate the constraint.

While the Shuttle Orbiter is docked to the station, heat rejection from the
Orbiter radiators is reduced about 15% due to blockage from surrounding
station elements. This reduction is considered acceptable since the Orbiter

probably will be powered down the majority of the time.

3.3.3.5.3.4, Design Complexity

The primary design complexity involves the launch packaging on-orbit
construction and activation of the truss-mounted radiators. This operation
will require RMS to:

1. Remove radiator contact heat exchanger modules and radiator elements
from the Orbiter payload bay

2. Install contact heat exchanger modules on the station trués,

3. "Plug in" radiator elements into the contac- heat exchanger. EVA

support probably will be required to make final fluid line connections.

3.3.3.5.3.5 Verification Complexity

Component level verification should follow that of previous programs with the
possible exception of life cycle tests. Items which fall into this category
are insultations, coatings, heater system components, and fluid distribution
system components. These tests with the possible exception of the heat pipe

radiators do not appear any more complex than those of past programs.

The question of verification complexity in the thermal area arises from
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verification of the integrated thermal control design of the Space Statiom.

The recommended approach is to baseline ground thermal testing of typical
elements and interfaces based on design commonality (to the fullest extent
possible) supplemented by Orbiter in-bay or deployed testing of items such as
heat pipe radiators requiring unique environments. Testing during the Space
Station buildup would be limited to checkout type tests.

Since the thermal verification approach is not highly configuration dependent,
additional discussion is presented in the Subsystem Definition Section,

section 4.2.

3.3.3.5.3.6 Surface Contamination

Contamination of thermal control surfaces resulting from RCS engine plume
impingement and other effluent sources can be accommodated in the thermal
system design and selection of materials. As discussed previously, the Delta
configuration provides the potential for material selectior with minimum
dependence on solar absorptivity properties and which in most cases woald
require a high emissivity valve. In general, contamination tends to increase
the emissivity. The location of the solar panz2ls and radiators with respect

to the RCS system appears to provide adequate protection.

3.3.3.5.3.7 Delta TCS Commonality

o Within Space Station

The delta Space Station configuration is an inherently symmetrical structure
with the habitat and lab modules being arranged symmetrically about one apex.
This results in similar thermal environments being imposed on both strings of
modules when averaged over the Beta angle cycle throughout an orbital year.
rol

This similitude of external influences permits a design of the thermal contr

subsystem that will be closely replicated from module to module. The primary
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variables will bpe the amount of internal equipment requiring thermal control

and the consolidated heat load to be rejected from each module

insulation) and active (heat acquisition, transport, utilization, rejection)
thermal control. The possible eXceptions to thisg will be the command control
modules which are not mounted adjacent to a planar truss surface and which

have higher incident solar flux, A dedicated, deployed radiator would not pe

expand. Design duplication wil] in general, also be inherent in the TCS of

antennas and RCS engine moduels,

o Commonalitywithplatform

Incorporated into a free—flying platform, Basic thermal bus architecture
would also remain the Same or similar if the Platform were to Tequire a large
thermal control capacity. The greatest divergence from the Space Station TCS
would be in heat rejection. If 4 module concept ia utilized in the Piatform,
module-mounted radiators would most probably be used. However, 2 deployed

auxiliary radiator surface may be required to pe articulated, depending upon
the platfornm orbital attitude. If the articulation of radiators is required

a fluid swivel or thermal slip ring, which is not requisite for delta Space
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Station heat rejection must be developed.

The utilization of high performance thermal coatings could be more critical on
the platform than on the deita station. This is assuming that the platform is
not oriented inertially towards the sun and is not the same configuration as
the station, thereby allowing greater solar impingement on associated
structural elements. The degree of thermal coating performance is dependent

upon the actual platform configuration and orbital attitude.

3.3.3.5.3.8 Technology Assessment

No vehicle unique technology requirements were identified. The on-going OAST

sponsored thermal technology program is further discussed in section 4.2.2.8.

3.3.3.6 Power System Evaluation

3.3.3.6.1 Introduction

The Power System consists of three subsystems: Energy Conversion Subsystem
(ECS), Energy Storage Subsystem (ESS), and Power Management and Distribution
subsystem (PMAD). For the Delta Truss configuration, the power system was
designed to supply an average of 75 KW at IOC and 150 KW for the growth
station phase. The system was designed with the following groundrules:

1. Ten year operational life was a design goal used for the various
components,

2. A modular buildup scheme was used where practical.

3. Module changeouts were permitted to achieve the 10 year operational
life of the components and the extended life of the station.

4. EVA was minimized for buildup but was not prohibited.

5. A two hour period was baselined for a. emergency energy storage
sizing criteria. This vot. u allow for the loss of one complete charging

cycle.
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6. Some off axis pointing was allowed to account for the flight attitude

of the truss. As a result, the arra\ size was increased by approximately 10%.

3.3.3.6.2 System Overview

The ECS solar array for the delta truss will occupy one face of the triangle.
The array will be attached to the truss which provides structural support.

The array will be launched in a box-like container, attached to one edge of
the truss, and then deployed. The blanket will be attached to the face of the
truss. The initial truss area only accommodates enough solar array to satisfy
I0C power requirements. Additional truss will be added to accommodate the
solar array area necessary to satisfy the growth station power requirements.
The ESS/PMAD module will be located at one edge of the truss adjacent to the
array. It will be attached so that the thermal control radiators can be
mounted on one side of the module. Since the station is solar oriented, the
array and radiators are fixed in a single posicion. The PMAD equipment is
located in this module and only high voltage, high frequency AC power is
transmitted to the other parts of the station. The basic arrangement is
illustrated in figure 3.3.3.6.2-1.

A breakdown of the weights is shown in tabie 3.3.3.6.2.-1. It was assumed
that the truss weight is not chargeable to the ECS solar array.

The delta truss configuration provides a very convenient installation location
for the solar array. With this configuration che mast will not be utilized.
However, a mechanism will be provided to deploy the array (a cable/pulley
arrangement may be used). The other parts of the array are common to all
configurations, i.e., the box, blanket, wire guides, etc. (see figure
3.3.3.6.2-2. Also, some means of attaching the blanket to the truss will have

to be developed. This should not be a major problem but will have to be

considered.
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SOLAR ARRAY (ECS)

I0C

Growth

REGENERATIVE FUEL CELL (ESS)

10C

Growth

PMAD

ESS/PMAD Module
Habitat Module
Logist ‘cs Module
Laboratory Module

Command/Control Module

Weight (1bs)
5,469
10,937

Weight (1bs)
3,967
7,933

Weight (1bs)
210
362
221
372
1,978

1

Table 3.3.3.6.2-1. Delta Truss Power System Characteristics

Area (ftz)
18,229
36,458

Volume (ft3)
1.34
6.70
3.53
6.56

23.64
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The delta will not always fly with the array perpendicular to the solar vector

and therefore, the size was increased by roughly 10Z. This was done to
mirimize the control propellants required and to allow more freedom in c.g.

control,

From only a solar array perspective, the truss provides a very convenient

structure for mounting a solar array.

3.3.3.6.3 Technical Evaluation

The following items should be considered for the delta truss configuration:

1. The array for this design will be about 10% larger than for a totally

solar oriented station.

2. Since there are no moving joints, the structure associated with the

array will be minimized. Note that there will be no moving electrical or

fluid joints.

3. This configuration would be very compatible with a solar dynamic

system that might be available in the future. The truss might also serve as a

mounting platform for GaAs concentrator arrays. However, concentrator arrays

require precise solar orientation of + 2°.

4. The arrays are located such that shadowing and plume impingement

problems should be minimized.

5. The power will be transmitted approximately 125 feet from the

ECS/PMAD module to the station modules. This cable will have to be installed

after the truss is erected.

6. If the station were to fly in a gravity gradient mode, then some

power would still be available.

7. The ESS/PMAD module is located adjacent to the array to minimize the

distance that the DC power must be transmitted.

8. Since all the power system components are mounted externally, EVA's

will probably be required for module changeout,
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9. The ESS composed of RDC's does not comply with the man-rated

redundancy specification until the third ESS/PMAD module is installed.

3.3.4 Operation Evaluation

3.3.4.1 Configuration Design Considerations

3.3.4.1.1 Separation from the Space Station

The location of the docking ports (2) on the 10C of the Delta Space Statinn
are illustrated in figure 3.2.4.1-i. The solar inertial attitude utilized by
the delta requires that its solar arrays always face the sun. The separation
sequence described in section 4.11, when applied to the velocity and radius
vectors, represents a sequence erntirely feasible for the delta configuration.
The only specific requirements is that time must be allowed for the delta to
rotate such that its ports are on or near the one of the two respective axes

prior to initiation of the sequence.

3.3.4.1.2 Return to the Space Station

The return scenario to the inertially stabilized delta configuration may be
accomplished using any of the approach techaiques described in section 4.11.
However, the farmost choice would be the inertial approach. Also, allowing
for sufficient rotation of the delta station and its ports would make

approaches along 'he velocity or radius vectors feasible as shown in figure

3.3.4.1-1. However, this would imply additional timing and lighting

constraints.

Additional concerns may arise from the delta configuration due to the two
ports being located essentially side by side. If two vehicles are to be
docked simultaneously to the station, clearance may become a problem during
the separation or approach for the last of the two vehicles to leave to
arrive. Placing the two vehicles in a "nose-to-nose" orientation may

alleviate the problem. Also, the capability to rotate the ports may be
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N

107 psf 1074 psf
-3 260" 1073 psf
10 ~ psf , T
1072 psf 1072 psf

Note: Figure assumes one nose and two tail VRCS Jjets added to
Orbiter canted 459 from vertical.

Figure 3.3.4.1-1. VRCS Plume Dynamic Pressure Contours
(Delta Truss Configuration)
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desirable. However, in the case of a single vehicle leaving or arriving at
the station, clearance from the station itself does not appear to be a

problem.

3.3.4.2 RMS Reach Capability

An integral subsystem of the Space Station will be one Oor more manipulators
remotely operated and used to perfrom a variety of operations. Some of the
more critical requirements of a station manipulator will be station assembly,
module removal, OMV/OTV berthing in the hangar area, deployment of the OMY/OTV
from the hangar area, as an aid to OMV, OTV, and satellite servicing, and
possibly as an aid to Orbiter/station berthing. The analysis conducted in
support of this document emphasized the use of the current Shuttle RMS to the
maximum extent possible for assembly of the delta concept. A "special"
station manipulator was considered only for those operations which exceeded
the reach capability of the Shuttle RMS.

The RMS analysis was performed using the RMS Desk Top Planing (RPS) developed
for RMS mission planning activities and used to define RMS payload handling
capabilities and procedures for STS missions. The program was updated and
modified to include the delta configuration.

The manipulator analysis included herein, is based on a kinematic model of the
RMS in that no rigid or flexible body dynamics are included. This limitation,
however, does not invalidate the feasibility of using the RMS for station
assembly since all modules handled are within the weight and inertia limits
verified for standard RMS operations. The study results are based on the
current RMS control algorithms and software and verify the reach capability as
well as the maneuver path for the RMS. The simulation also checks for
singularities and joint reach limits. In summary, all maneuvers studied for

the Delta configuration assembly sequence should be valid with the exception
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of possible crew visibility constraints. RMS operator eye-point and CCTV
views can also be generated using the RPS simulation, and these results will
be reported in future documentation.
In performing the kinematic analysis to assess the RMS capability to remove
station modules from the Orbiter payload bay and assemble the station, the
following assumptions were used.

I. Truss structure is assembled prior to module deployment.

2. Port and starboard RMS's are available

accomplished with the Orbiter firmly docked to the Space Station.

4. Grapple fixture location and orientation are identical on all
modules of the same type.

5. Payload bay locations consider only RMS reach capability and not
Orbiter c.g. restrictions.
The similarity in the module arrangement - the Delta configuration to that of
the big "T" results in essentially the same assembly scenario as described in
section 3.4.4.2 for the big "T." The only exception is that preliminary
analysis indicates there is no single location available for a station
manipulator (SM) such that the logistics module, the last two interface
modules and tunnel can be maneuvered into place. In general, the reach
analysis of a station manipulator on the Delta configuration is complicated by
the double truss arrangement forming the sides of the Delta to which the
modules are attached. Future analysis will attempt to define an optimum
single location for the SM which can accommodate station assembly and

operations,
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3.3.5 Safety Accommodations

The safety accommodations provided for the IOC Phase (Phase I) were used for
the basic concept evaluation since this was considered the most critical with
respect to crew safety. In the growth phase, volume available increases the
time of reaction to a leak of approximately 1.0 hours (see paragraph 3.3.5.5).

Otherwise, the comments are applicable to both Phase I and Phase 1IV.

3.3.5.1 General

The DPelta truss configuration does not appear to present any constraints to
meeting the requirements for crew safety, assuming the requirements specif:ed

in Books 3 and 6 of the Space Station Configuration documents are observed.

3.3.5.2 All Habi able Modules (Habitat, Laboratories, Interface and C/C)

Egress Capability

Dual egress paths from each module are incorporated. A backup command and

control facility will be in the Habitat Module.

3.3.5.2.1 Logistics Module

Book 3 Systems Requirements and Characteristics specifically exempts the
logistics module from the "two or more entry/egress paths." The logistics
module has only one egress path, the risk to a crewmember occupying tais
volume during the occurrence of an accident forcing evacuation of the volume
could probably be reduced ¢y an acceptable level by proper location of
equipment, adequate materials cortrol, elimination of potential ignition

sources, and maintenance of adequate traverse cleavance during operations in

the module.
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3.3.5.3 Enclosure of High-Pressure or Hazardous Fluid Tanks

The logistics module will be divided into a pressurized section and an
unpressurized section. High pressure and hazardous fluids will be transported
in the unpressurized section to avoid the possibility of fluids propagating
into other modules or cause overpressurization of one or more modules. The

separation distance of various tanks has not beer defined.

3.3.5.4 1Isolation of Modules after Accident Occurrence

One problem that arises from the provision of dual egress routes from a
habitable module is the complexity of the process of sealing off that module
after such things as a spill of a toxic fluid. This suggests the desirability
of a self-contained environmental control circulation system for modules such
as the laboratories to minimize the potential for cross-contamination of
modules while the hatches at each end of the contaminated module are teing

closed.

3.3.5.5 Reaction Time after Occurrence of a Leak

The Safety Division position, with respect to hatch management, is that all
hatches should be normally open to create ease of transit from module to
module, reduce the wear on hatch mechanisms, prevent hatch opening
difficulties because of small pressure differentials, and maintain the maximum
volume for bleed down in case of a leak. Of these reasons, the last is
probably most significant, considering the large n'mber of sealing surfaces
and the increased potential for a leak. In the IOC configuration of the
Delta, a rough calculation of the time to react to the occurrence of a leak
equivalent to a one-inch diameter hole would slightly less than 30 minutes,
assuming a 95 percent efficient orifice, an occupancy of 25% solids in the

station, and a reduction of pressure from 14 to 9.1 psia. If a leak detector
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sufficiently accurate to determine the module containing the leak is
available, this should allow adequate time to react to the occurrence by

evacuating and sealing off the affected module.

3.3.5.6 EVA Operations

The RCS package locations were not specified and no evaluation of their effect
on EVA operations was possible. The structural approach should be readily

adaptable to the provision of EVA traverse and work station restraints.

3.3.5.7 Repair and Reactivation of Modules after an Accident

Adegquate airlock provisions are provided to ailow Intervehicular Activity
(IVA) suited reentry into a module that has been isolated because of an

accident to perform necessary repair or reconfiguration to permit continued

use of the module.

3.3.5.8 Multiple Orbiter Docking Ports

The ability to dock with and access the Orbiter from various volumes of the

SR R) I AERL

Space Station is acceptable.
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3.3.6 Cc~t Evaluation
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3.3.6.1 Groundrules and Assumptions

The following groundrules and assumptions were used in the cost analysis for

the Delta configuratino:

o The Space Station Cost Model (SSCM) developed by Planning Research

Corporation (PRC) was used to develop hardware and system level costs.
o The concept was treated as one work package.

o The I0C configuiation only was costed.

o No learning was assumed.

o No explicit reserve was included.




o No STS flight costs were included
o Subsystem costs were allocated to the modules on the basis cf weight,
o Costs are expressed in miilions of 1984 constant vear dollars. Since
SSCM outputs costs in 1982$, the inflation adjustment was made using the NASA
R&D inflation index (1.175 for 1982 to 1984 dollars).
o Program level costs (including fee) were included using the Code B
factors.
o Complexity factors considered to be i.0 except the following:
o Closed loop ECLS was costed using the open loop ECLS CER with 1.6
complexity factor. Factor based on CDG trade study.
o Berthing and docking adapter used a 0.8 complexity factor and used
the ASTP adapter as an analogy.
o Complexity factor of 0.6 used for fuel cell based on JSC analysis.

o GSE complexity factor of 0.8 was used, based on CDG cost estimate.

3.3.6.2 Presentation of Results

Figure 3.3.6-1 presents the results of the SSCM for the Delta apnroach. The
model computes the DDT&E and the first unit costs. The costs shown are for
one of each Space Station module or element (i.e., hab module, boom array,
etc,) Therefore, figure 3.3.6-1 does not show the total cost of the station.
Figure 3.3.6-2 presents the DDT&E and First Unit Costs after being spread to
the different modules. The three parts to this figure present cost spreads by
module for DDT&E, Production, and total costs. As with the previous figure,
the costs shown for the production phase are ror the first unit of each of the
modules.

Figure 3...6-3 presents the summary of the costs by quantities and types of

modules that comprise the T10C coniiguration. The first two cost columns recap
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the totals found in figure 3.3.6-2 for DDT&E and Production (First Unit). The

third cost column is the total production costs taking into account the

quantities of each module or element. The final column is the total of the

DDT&E and Production costs and is therefore, the total of the Space Station at
IoC.
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3.4 "T" Configuration Evaluation

3.4.1 User Accommodation Evaluation

3.4.1.1 Viewing

The "T" Space Station configuration will provide for comnstant earth viewing at
a 28.5° inclination. It is like the BB configuration in that the pressuri=ed
lab will always be earth oriented. It is like the delta truss configuration
in leccating the unpressurized sensors for solar and stellar viewing along the
solar cell truss. The viewing frequency for stellar is again limited for a
specific target. However, it is possible to accommodate simultaneous earth,

solar, and stellar viewing with this configuration.

3.4.1.2 Power
The power supplied to the user at I0C will be 60 KW continuous and at growth

it will be 120 KW continuous.

3.4.1.3 Pressurized Volume

The pressurized volume at IOC provided to the user is two 22 foot modules.
Fo. ;rowth, a total of four 22 foot modules are provided with one 44 foot
module. The 44 foot module offers facility versatility in the growth phase
and the two 22 foot modules offer flexibility at I0C., However, this is an

issue; see Section 5.0.
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3.4.1.4 Crew Time

A considerable amount of the crew's time has been allocated to the user as
shown in sections 3.2.4, 3.3.4, and 3.4.4, each section pertaining to the
building block configuration, delta truss configuration, and "T" configuration

respectively.

3.4.1.5 External Attachments

A pallet attachment for the user is possible with this configuration.

3.4.1.6 Microgravity

The acceleration level at the modules that require low gravitational levels
are assumed to be 10-4 g nominal. However, the effect of the modules distance

from the station's c.g. has not been determined and needs to be considered for

each configuration.
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3.4.2 Crew Accommodations Evaluation

Due to the amount of equipment and the arrangement of the floor and ceiling,
the C/C module only has the capability of having windows in one plane. Ir
would be desirable to have windcws capable of viewing all directions. Crew
accommodations in the module are the WCS, a minimal galley, stored food for
eight people for 22 days and a hygiene station. The accommodations are
adequate.

If the manipulator is controlled from this module, the limited visibility will
require additional windows or video equipment and perhaps at times, EVA
crewperson to guide the manipulator.

The habitability module provides sleeping quarters, personal hygiene, medical
facilities, and a galley/wardroom. The private sleeping quarter volume is
adequate for sleeping, dressing, video training, and entertainment, grooming,

and associated activities. It is generally preferable to have the sleeping
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quarters located away from noisy equipment which would disturb a sleeping crew

person. The habitability module does not entirely succeed in doing this,
adjacent to the sleeping quarters is the Personal Hygiene and Medical
Facility. The Personal Hygiene area contains two combinations
shower/urinal/handwash facilities and a Waste Control System (WCS). The

Medical Facility contains limited medical equipment and supplies and the

for

physical conditioning equipment. To make their location in the habitability

module acceptable, the WCS and health maintenance equipment noise levels must

be sufficiently low to avoid disturbing a sleeping crewperson or special

accousticil isolation must be provided. The Personal Hygiere Facility coupled

with a WCS in the Command and Control Module is adequate for eight
crewpersons. The galley and wardroom provide facilities for use by eight
crewpersons simultaneously which is adequate. The wardroom area should

provide a capability for group training or entertainment.

For growth, a second sirilar habitability module is added to the station and

the medical/physical conditioning equipment is moved to the Li‘e Sciences Lab.

The second habitability module is adequate for the increase in crew.

The habitability module is designed to permit unimpeded passage through the

module. The module maintains a consistent heads-up orientation which is

desirable. The floor and ceiling are offset from the module walls to allow

utility equipment location. This combination renders it difficult to locate

windows in these areas and consequently there are none. (It would be
desirable to have windows encircling the module.)
The big "T" size and configuration has the following disadvantages:

o About one-third of the view from any module is blocked by
structure/solar arrays/other module. It i35 desirable to be able to view

all directions from a module.

in
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o An EVA crewperson to reack the critical systems equipment cn the "top
of the T" must traverse considerable distance. This is not a decisive factor;
however, it does add to the work, time, and complexity of the EVA.

The existing menipulator system is only 50 feet in length. To reach all areas
of the station will require:

o The development of a new manipulator

o Moveable manipulator

o Numerous manipulators

3.4.3.1 Assembly and Growth Evaluation

A preliminary launch-by-launch buildup sequence has been developed and is
summarized in figure 3.4.3.1-1. This sequence is based on Orbiter payload bay
packaging that is plausible but optimistic. It is assumed that an Orbiter
docking module is carried on all flights. Where possible, all elements are
installed initially in their final locations. Exceptions are indicated in
figure 3.4.3.1-1 by an arrow from the flight that launches the element to the
flight on which it is moved to its final location. Completion of IOC and
growth capabilities is denoted by heavy vertical lines. Figure 3.4.3.1-2

illustrates the assumed packaging in the payload bay for each launch required

for I0C.

3.4.3.1.1 User Accommodation: Assembly and Growth

The "T" provides substantial versatility in accommodations for users. The

truss has large non-dedicated areas that are useable for most unpressurized
payloads. It would also be possible to place additional pressurized modules
along the sides of the truss, although radiators would have to be relocated.

The order in which facilities are added is also relatively unconstrained after

the first few launches.
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3.4.3.1.2 Systems Engineering: Assembly and Growth

It is assumed that work requiring a low-gravity environment will be suspended
during any station assembly operations, and therefore that this is not a
discriminator. The principal inertia axes will shift when an Orbiter is
berthed but no enough to have a major impact on power input.

Transition effic .ency is fairly good. One IM must be relocated in the
reference buildup scheme.

The energy storage unit on the first launch contains cryogenic oxygen and
hydrogen to supply minimal power until a solar array is launched on the second
flight, venting or storing the excess water produced. It subsequently
functions as a regenerative fuel cell with gaseous reactants. Subsequent
energy storage units are launched with gaseous reactants., There are no
elements in the early phase that are discarded in later stages.

Assembly will require the full capability of che Orbiter RMS. A second RMS or
a2 handling and positioning aid will be needed in some steps. Note that the
RMS reach analysis in section 3.4.4,2 zssumes a large manipulator on the
station at an early point in the buildup in lieu of a handling and positioning
aid. Substantial EVA will probably be necessary, primarily for joining of
truss sections and installation of equipment. Deploying a *truss section and
joining it to an existing truss appears possible but difficult.

Removal of a module does not affect the structural characteristics of the
station., If the pressure loads between modules are carried through the truss,
removal is a simple process of disconnecting internal and external umbilicals,
closing hatches, and depressurizing and retracting the intermodule connectors.

If the loads are carried directly between modules, the task may be more

difficult depending on the design of the connectors.




Two Orbiter berthing ports are available at IOC and four in the growth
configuration. Twenty-four other ports are available for logistics modules
and other temporary payload:, since each IM has six ports.

3.4.3.1.3 Programmatics: Assembly and Growth

The reference buildup scenario achieves IOC in seven launches. Sufficient
critical system redundancy for permanent manning is reached in four launches.
At this point, crew size is limited by the lack of a logistics module but an
LM provides facilities for useful work.

Full growth capability is reached in 15 launches. Efficient hangar design and
packaging could reduce this by one flight so that full capability might be

achieved in 14 flights.

3.4.3.1.4 Safety: Assembly and Growth

The OTV propellant storage facility is located about 65 feeot from the
inhabited modules although an alternative arrangement places it about 40 feet
awvay. A separation of up to 150 feet can be provided, if desired, with
minimal impact on station functacn.

Isolation of a hazardous condition, such as a spill of a toxic substance, can
be done with little difficulty. Since there are two routes to each module,

any one can be isolated without significant disruption of other activities.

3.4.3.2 Structural Dynamics and Control Evaluation

The "T" configuration is designed to fly in the LVLH mode (see figure
3.4.3.2-1). In that flight mode the "T" is pitched in the orbit plane to
achieve a TEA condition. The CMG's control the resulting cyclic torque
disturbances. The TEA flight condition is achieved by flying the "T" at

different pitch attitudes and iterating to a resultant equalibrium condition.
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3.4.3.2.2 Ot Orbit Disturbances

Operation in low earth orbit (270 NM) Provides exposure to sigunificant gravity

gradient torque disturbances. These dre on the order of 5C-foot pounds. While

relatively insignificant from a controllability point of view, the extreme time

span of the Space Station mission makes these significant drivere for "cost-of-

ownership," unless Steps are taken to minimize their influence.

3.4.3.2.3 Aerodynamic Tor ue_Disturbance

In addition of gravity gradient torques, the aerodynamic torques can produce

secular momentum accumulation. However, the asymnetric effect of the diurnal

atmosphere variation has been neglected for this analysis. 1In the earth fixed

mode, the large areas of the solar arrays are never directly e€xposed to the free

molecular flow particle velocity for the "T"; hence, only effects of the modules

and

3.4.3.2.4 Magsg Properties Mapagement

Mass properties Tanagement scheme must be employed in the Spece Station design in

order to enhance the flight performance. The mass properties should be zdjusted so

that at the TEaA condition the geometric axis aligns with the LVLH; this will reauce

the overall drag forces. The mass properties for the "T" are shown below:
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BIG "T"

10C Growth
.04 E 7 19.5 E 7 slugs-ft?
8.2 E 7 14,2 E 7 slugs-ft?
2.4 E 7 5.5 E 7 slugs-ft?
-1.0° .87°
-5.7° -8°

0° .57°
33.1 79.1 ft
03.75 -1.29 ft
45.8 42.3 ft
308.K 702.5K

* Euler angels; rotate from geometric axes to principal axes with rotation

order 0 , 0, and O . R R , R center of mass center IXXP, IYYP, IZZP,
_i%1 13 . z > Yz

principal inertias.

3.4,3.2,5 Momentum Storage Requirements

Momentum srorage requirements are based upon the peak cyclic momentum
variations and the attitude control system philosophy regarding the amount of
reliance on the CMG's for attitude maneuvers and absorption of large impulsive
disturbances (i.e., mix between CMG torque impulse and RCS torque impulse).
Peak cyclic momentum storage for the "T" configuration due to aerodynamic
torque and gravity gradient are presented below. Due to the time available
for this study, the momentum storage equipment was sized only for the nominal

flight conditions involving attitude hold.

Flight Mode I10C Growth

Earth Fixed 4,500 Ft-1bs 6,000 Ft-lbs




3.4.3.2.6 Orbital Maintenance Impulse Requirments

Orbital maintenance impulse was determined using the NASA neutral atmosphere
(SP-8021) density at 270 NM and average aerodynamic properties to compute the
drag impulse. The NASA neutral atmosphere is considered to be the worst
long-term atmosphere applicable to a 90-day resupply cycle. Short term
maximum conditions should be used for RCS engine magnitude sizing.

The disturbance simulation used a dynamic pressure of .99905E-6 1b/ft?.

Summary results for the three configurations are shown below:

DRAG IMPULSE PER ORBIT

(LB-SEC/ORBIT)
Flight Mode 10C Growth
Earth Fixed 113 95

Using the data shown above, worst case resupply propellant for altitude
maintenance was calculated and is presented below. Assuming that the orbit is

not allowed to deviate from 270 NM.

90-DAY RESUPPLY PROPELLANT FOR ALTITUDE MAINTENANCE FOR 270 NM
LBS - Normalized to: ISP = 220 sec.
Flight Mode I0C Growth

Earth Fixed 700 590

3.4.3.2.7 RCS Firing Frequency

Detailed flight dynamic sirulations show that the "T" configuration can be
trimmed so that there is no secular torque momentum accumulation per orbit.
Thus, no RCS firing are required for CMG desaturation. The "T" configuration

can achieve a minimum RCS attitude maintenance firing frequency of once every
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90-days chosen to coincide with STS resupply. This will be particularly
attractive to long term low "g" scientific experiments and manufacturing

processes. Attitude loss will be less than three miles in SU-days.

3.4.3.2.8 Results of On-Orbit Flight Dynamics for the "T" I0C

The results of the on-orbit flight dynamics are shown in figures 3.4.3.2-2
ttrough 3.64.3.2-4. The torque impulse history curves shown in figure
3.4.3.2-2 show that equilibrium was not quite reached. (ITY = 6,600
ft-1b-sec/Orbit). The cyclic momentum storage raquirement is 4,500 ft-lb-sec
will not change significantly if further iterations are made. The aerodynamic

drag impulse history shown in figure 3.4.3.2-3 is 113 lb-sec/orbit.

3.4.3.2.9 Results of On-Orbit Flight Dynamics for the "T" Growth

The results of the on-orbit flight dynamics are shown in figures 3.4.3.2-5
through 3.4.3.2-6. The torque impulse history curves in figure 3,4.3.2-6 show
that equilibrium was not quite reached (ITY = 2,000 ft-1b-sec/orbit). The
cyclic momentum storage requirement is 6,000 ft-lb-sec and will not change
significantly, in further iterations, the aerodynamic drag impulse history
shown in figure 3,4.3,2-5 is 95.0 ib-sec/orbit. Figure 3.4.3.2-6 shows the
torque impulse history imbalance if the "T" is flown with its geometric axes

aligned with the LVLH.

3.4.3.2.10 Structural Dynamics and Control

A NASTRAN finite element model of the big “T" (figure 3.4.3.2-7) was created
to aid in the structural dynamic analysis. This configuration utilizes the
structural truss concept. Deployable or erectable trusses have many
attractive features for the Space Station structural subsystem. The section
depths of 8-10 feet enhance the structural bending stiffness which results in

higher overall system model frequencies. The Streamlined "T'" and the Delta
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Figure 3.4.3.2-7 Finite Element Model of Streamlined "T"
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concepts both utilized this technology to achieve a significant improvement in

natural frequency over the BBC. The fundamenta. mode for the Streamlined ''T"
is array bending at 0.45 Hz. The dynamic behavior of this system is penalized
by the large amount of non-structural mass associated with the over-sized
solar array. The additional geometric dimensions and increased distributed
array mass caused by the inefficient array pointing subtrzct from the
structural advantages of the truss. In addition, the structural details o
the hinged interface have not been given adequate design attention to
speculate on the compliance of this system. In this analysis, th: hinged
interface was locked so that analytical attention could be focused on the
array size trade. A hinged interface between the module support truss and the
array support truss may contribute to an additional low frequency pendulum
mode where the truss systems move relative to eack other. This mode would be
a candidate for active control system damping. Module placement for this
concept is an improvement on the BB design by allowing multiple attachment
opportunities along the length of the modules.

For tnhe Streamlined "T" configuration, a single axis control system was
developed that utilized the maximum rotational inertia for the vehicle
dynamics model. Second order models were used for the CMG and angular rate
dynamics. The resulting closed loop control system exhibited nearly
critically damped CMG/rate poles near the open loop values. Controller
bandpass was determined from the frequency response analysis (Bode plot). The
Streamlined "T" showed the slowest time response which is attributable to the
rotational inertia of this system. In frequency this translate to a smaller
bandpass; in this case, 0.28 Hz. Comparing this value with the structural
analysis that indica..; a first array bending mode at 0,45 Hz, a marginal

separation between the flex spectrum and the controller bandpass is observed.
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A rigid body type control system should be suitable for this configuration,

although some filtering may be required due to the close proximity of the bending
frequenciea to the bandpass frequeuncy.

The structursl dynamics of the streamline "T" during intermediate buildup stages
was not analyzed at this time. The various stages will produce significantly
different results from the analysis of the completed versions.

This concept, with its large truss areas, will change modal frequencies and shapes
during construction to the IOC configuration. However, once established, the
growth of the "T" by the addition of more modules will not excessively complicate

the changes in vehicle dynamics.

3.4.3.2.11 Summary of On-Orbit Flight Dynamics

The flight dynamics of the configurations have been studied in detail for the earth

fixed (LVLH) attitude hold. Using mass properties management to control the system

inertias, the TEA trim adjustments the momentum accumulation cam be reduced to
zero. Propellant resupply weight of up to 700 lbs. for orbit maintenance does not
seem to be a critical item.

The "T" configuration because of the use of the deployabie truss to support the
solar array, causes a higher frequency of the first array bending mode. Increased

in the size of the solar a-ray for growth versions will lower this frequency.

3.4.3.3 Communications Evaluation

The communication subsystem consists of hardware required to establish
communication links between the Space Station and various vehicles. Antenna
requirements for the subsystem are essentially the sum total of those

requirements developed by considering each link separately. 1In this
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Procurement of this antenna represents routine design and deve.opment

effort if the array is passive (electronics separate from antenna elements).
However, some risk is introduced in the development if the array is active
with monolithic design (electronics combined with the antenna elements in one
package).

b. Multiple Access (MA) Link - This is a K-band 1ink that supports two-way

communicatior between the Space Station and the EMU, FF, and OMV vahicles.
The coverage is divided into two parts. The far range (to 2,000 km) coverage
is a 20° conical sector centered about the velocity vector in the forward and
aft directions. For short range, the coverage if 4 pi - steroidal to about
400 km.

Two high gain (41 dBj multibeam phased array antennas made up of
about 16,000 elements and measuring about 28 inches in diameter each will
serve the far range sectors. These antennas must be mounted on the Space
Station in such a way that their broadside direction is along the flight path.
On this configuration, they are located on the section of the truss protruding
on either side of the solar panel.

The above specification for the two high gain antennas assured an
operating frequency in the Ka-band at about 28 GHz. There will be medium
amount of risk associated with the development of such a large array antenna
(16,000 elements) in the passive mode. The risk becomes high if the array
design is active and monalithic. The design difficulty can be reduced
considerably by moving to a lower frequency like Ku-band where an array size
of about 1,000 elements will be sufficient due to lower antenna gain (30 dB)
and higher antenna efficiency.

Generally, zwo more antennas are needed to complete the spherical

coverage required for short range. These two antennas are medium gain (27 dB

309




1

at Xa-band) multibeam phased arrays where each is comprised of 640 elements
and measures about six inches in diameter. Their placement on the Space
Station is designed so that one will view the bulk of the upper hemisphere and
the other will view the bulk of the lower hemisphere. They are located one on
the topside of the solar panel truss and the other on the underside of the
leftmost habitat module.

Procurement of the above two antennas represents routine development
effort if the array is passive and minimal risk if the array 1s active and
monolithis irrespective of whether the design frequency ic in the Ka or Ku

bands.

c. Tracking and Data Relay Satellite (TDRS) link - This is a dual

S/Ku-band link that supports two-way communication between the Space Station
and the TDRS satellite. The coverage required is hemispherical in the
elevation plane and forms an 80° sector in the azrimuth plane.

The link is to be served with a dual-feed, dual-frequency
mechanically steerable parabolic reflector of nine feet diameter. This
antenna must be located on the topside of the Space Station in such a way that
the upper hemisphere is visible. On this configuration, it is located on the
topside of the truss section protruding next to the solar panel.

Procurement of this antenne is subject to a medium level of risk
arising from the adaptation of tbe two feed systems to the mechanically

steerable parabolic reflector.

d. TV Links to FF's and OMV's - These are independent Ku-band links

relaying digital TV signals from the FF's and OMV's back to the Space Station.
Two links are needed in the I0C stage increasing to six links in the growth
stage. The coverage on each link will be a 20° cone out to 2,000 km for far

range coverage and a hemisphere below the station extending 50 km,
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Each link can best te served by high gain conformal phased arrays to
obtair a spherical coverage with minimum number of antennas. Each array will
base a diameter of about four feet. On this configuration. two arrays are
requoired per link where one is located on the top of the solar panel truss and
the other located on the bottom of either the habitat module (IOC) or the lab
modules (growth).

The antenna arrays for the TV links represent high risk development
items due to the large number of elements that would be involved in the
desiga.

e. Orbital Transfer Venicle (OTV) Link - This is a K-band 1link

supporting two-way commuaication with the OTV vehicle in the growth
configuration only. The coverage is a full sphere with a maximum radius of
100 km.

The link can be served by a pair of medium gain phased array artennas
each covezring one hemisphere. The size of each array is 400 elements at
Ka-tand fregquency and measures about five inches in diameter. The placement
of these antennas on the Space Station is as follows: one antenna is located
on top of the solar panel truss and the other on the underside of the leftmost
habitat module.

The development of the array pair presents no risk if the array is
passive. Minimum risk results if the array is active.

f. Tracking Links

Four links will be used to provide Space Station position and attitude
information, and to provide relative position and velocity information on
other Space Colony vehicles and ohjects within specified volumes of concern.

The Global Positioning System (GPS) Satellite Constellation Link is an L-band
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receive-only navigation and tracking link. The Space Station GPS antenna must

be able to receive code tracking information from a group of four satellites
simultaneously. The antenna coverage consists of a 160° cone centered about
the Space Station local vertical.

The link would be satisfactorily served by a low gain omnidirectional
antenna. This antenna must be mounted on the Space Station in such ¢ way that
most of the upper hemisphere is clearly visible. On this configuration, it is
mounted on the left solar panel boom.

Procurement of such an antenna is routine, and there is no
development risk involved.

A Shuttle Rendezvous Radar link wil® be completed by a transponder
onboard the Space Station. Two transponders and two omnidirectional antennas
will be used for this link.

Rendezvous radar links will be used to maintain continuous position
and velocity data on vehicles that are approaching the Space Station during
the implementation of flight plans which involve docking. Similar position
and velocity data will be provided for vehicles that are departing, and are
within a specified range of concern. Two antennas, directed force and aft
along the velocity vector, will be used for this function; each antenna is
expected to be approximately three feet in diameter.

Multiple vehicle tracking will be accomplished by Search and Track
Radars which will maintain updated position information on vehicles at
distances as great as 2,000 km. A minimum of five antennas will be used for
this purpose, to provide coverage of the fore and aft directions along the
velocity vecto:. A maximum of four antennas will be used to provide complete

coverage of a specified vclume around the Space Staticn.
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3.4.3.4 Elements/Utilities Interface and Mechanisms Evaluation

3.4.3.4.1 Genzral

comprise

the basic structure to which other elements, including modules, are attached.

The -tandard berthing interface is used for joining module-to-module, though

alternate schemes for routing of some utilities outside the berthing interface

offer some advantages, With regard to mechanisms, the rotary joint between

the array truss and the vertical truss is a dominant feature, particularly in

considering assembly.

As for the delta truss configuration, much of the mechanical systems and

interface study effort has focused on assembly of major station elements and

on concepts for utilities wiring and plumbing. A major objective is to

develop concepts which are coupatible with manipulator operations and minimize

EVA requirements. In some cases, more detailed design activity will be

required to fully estaklish practical .vels of manipulator versus EVA
operations. For example, concepts for placement cf station electrical wiring
using the manipulator appear practical, but limited use of EVA for mating of

connectors may avert the need for development of sophisticated mechanisms for

that limited purpose. There is a need for more specific trade studies of EVA

versus manipulator activities as well as continued evaluation of manipulator

capability and complexity of manipulator operacions versus capability of

assembly mechanisms.

3.4.3,4 2 Berthing Mechanism

Berthing involves use of a manipulator to achieve final closure of two

spacecraft or assembly elements, thereby insuring relatively small,

misalignments and contact velocities. Contact énergy attenuation requirements
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are low and alignment guides are shorter than would be required for docking
operations. The bertaning interface comprises alignment guides, structural
latches, a telescoping pr:ssure tunnel, retract/extend actuators, utilities
interconnect provisions and supporting structure (see figure 3.4.3,4=1). Four
alignment guides are incorporated to provide 90° indexing for statinn
elements. Guide length of 5.75" w11} accommodate expected misaligireats for
berthing operations. The manipulator, aided by the alignment guides and other
sensors as required, brings the interfaces within the envelope of the combined
capture/structural latches. Operation of these eight latches, located on the
alignment guides, completes the structural mating of the interface. The
Structural latches are sized to carry the full pressure load and all
dynamically induced loads across the interface. Within the 15" length of the
berthing mechanism, a 5" stfoke of the mating interface will be provided by
three pairs of electromechanical actuators. After structural mating is
accomplished, these actuators will be fully extended.

The telescoping pressure tunnel, shown in figure 3.4.3.4-2, is extended by
independent small electromechanical actuators. The tunnel ccncept
incorporates redundant pPressure seals and a complete set of tunnel elements
may be extended from either side of the interface.

Truss mounting of the modules may greatly modify the requirements for the
berthing interface. If modules can be berthed first to the truss attachment
structure, the module to module interface can be simplified. Further, the
truss attachment may reduce the loads across tne berthing interface, thereby
reducing structural requirements. These effects could not be evaluated in
sufficient depth to warrant changing the baseline berthing mechanism at this

time.
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The size and type of utilities interconmnects which must cross the berthing
interface are shown in table 3.4.3.4-1. Utilities may be routed through the
berthing interface in the same manner as for the building block configuration.
Alternately, the close proximity of the truss structure provides the option of
installing some utilities busses on the truss structure, with independent
parallel connections to the modules. This is a natural choice for thermal
control since the freon fluid and vapor busses must be _ocated outside the
modules and the system is necessarily plumbed with this parallel structure.
The advantage of truss mounting the main supply busses is that a module may be
removed without interrupting service to the remaining modules. Concepts for
truss mounting of the electrical power and thermal transport busses are

described in section 3.4.3.4.4.

3.4.2,4.3 Array Truss Rotary Joint

For optimum energy collection efficiency, the array truss must be rotated %
17° relative to other station elements. The energy storage and conditioning
truss (beam) is therefore mounted to the vertical truss through a system of
hirges and linear actuators as shown in figure 3.4.3.4-3 and 3.4.3.4-4. These
hinge and actuator mechani:ns must be designed as much for ease of assembly as
for assembled function. Attachment of the mechanisms to the truss structure
will be as descr’bed in section 3.4.3.4.5. Details of the assembly process
and details of mechanisms design have not been developed. The power system
radiators are mounted on the array truss and radiators for other elements are
mounted on the vertical truss such that thermal control fluid and vapor loops
do not cross the rotary joint. As the energy storage and conversion (ES/C)
modules are also mounted on the array truss, only AC power must be delivered

across the rotary joint. Flexible couplings should accommodate the required

+ 17° rotation.
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3.4.3.4.4 Truss Mounted Utilities Interfaces

Figure 3.4.3.4~5 illustrates a concept for power distribution from the solar
arrays to the various modules. The solar arrays and ES/C modules are located
on the array truss. DC power is delivered from the sclar arrays to the ES/C
modules with two pairs of #4 wire with two pin conaectors at each end as
shown. The power is converted at this point into three phase 400 VAC and four
distribution busses are routed from each ES/C module down near the base of the
vertical truss structure. These four busses are connected to a main
distribution four bus system which is attached to and encircles the truss
Structure. Each module is then connected to these main distribution busses.
Each module will coatain four distribution busses for redundancy. Only two
busses will be activated as supply busses at a given time. All connections
within the AC power distribution circuit will be made with contactless
(inductive) connectors.

Installation c¢f the power distribution System need not involve stringing wire.
Prior JSC study efforts proposed use of cable trays which could be attached to
the truss elements with simp’e push on clamps. Cable runs longer than the
Orbiter PLB could be accommodated with folding cable tray assemblies. Many
details remain to be worked, but placement of the power distribution system
using the manipulator does not appear impractical. EVA may be more attractive
for connecting the various elements,

Details of the thermal transport concept are less well developed. Freon fluid
and vapor busses must be connected from the truss mounted radiators to the
various modules, Schematically, the concept is the same as for power
distribution. Fluid and vapor lines will be routed from the radiators to main
busses which are attached to and encircle the truss structure near the

location of the modules. Each module will be independently connected to the
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main busses; therefore, removal of a module will not interrupt service to the
other modules. A typical module connection arrangement is shown in figure
3.4.3.4-6. Precharged line segments will be mounted to the truss structure
and connected to form the thermal transport system. Use of tubing trays which
easily attach to the truss structure may simplify the placement process but
many connections must be made and verified. Significant EVA, or manipulator

assisted EVA, may be required.

3.4.3.4.5 Element-to~Truss Attachment

Large elements must be attached to the truss structure at the nodes where
significant loads can be tolerated. The nodes will be designed to accept
quick operating push in (pip pin) connectors and more sophisticated connectors
capable of withstanding higher tenmsile loading. For low mass items such as
cable trays, simple push on clamps which attach directly to the truss elements
(approximately 2" diameter tubing) may be adequatc.

Each special truss attachment requirement must be worked in detail. Prior JSC
studies identified several practical attachment concepts, including multiple
tripod arrangements for attaching modules (or the OTV). For this study, a
tripod module artachment scheme was evaluated for the purpose of weight
estimation. Four tripods are employed with each of the 12 legs attached to a
truss node. Four lightweight retention fittings, which interface with the
standard trunnions used to mount the module in the PLB, are attached to the
upper ends of the tripods. Estimated weight for this concept is 0.5% of the
attached module weight, so an attachment weight penalty of 0.5% of the weight
of all elements attached to the truss was assessed.

The number of nodes available for attachment is quite limited so detailed
design of attachment concepts will be an important process and cne which may

influence slight modifications in station element placement.
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Certain nodes are exposed in the packaged condition of the truss. These nodes
are ideal f~v attachment, prior to deployment, of one or more manipulator
grapple fixtures to facilitate assembly.

Of particular interest for the "T" configuration is the assembly of tne rotary
joint betw2en the array truss and the vertical truss. The hinges and
actuators must be attached to load carrying nodes so the geometry of
attachment bracketry is restricted. It may te necessary tc bypass the rotary
joint elements with a more easily accomplished temporary attachment to hold

these large structures in place while the rotary joint is completed.

3.4,3.4.6 Manipulator Systems

The Space Station manipulator will be the standard Orbiter RMS unless further
detailed evaluation of the assembly process establishes the need for greater
reach capability. The RMS shoulder will be mounted to a bertting interface
mechanism modified to accommodate RMS power and control utilities only.
Through the berthing interface, the manipulator may be stationed at any
available berching port. A special manipulator berthing port will be mounted
to the vertical truss structure in position to aid in station assembly and to
service the OMV hangar. Two additional manipulators will be located to

service the added hangars and the satellite servicing facility on the growth

configuration.

3.4.3.4.7 Hangar and Satellite Servicing Mechanisms

The OMV and OTV hangars will be attached to the vertical truss structure. All
hangar doors will be provided with conventional hinge, latch, and drive
mechanisms. The satellite servicing area comprises beams attached to the
vertical truss structure. The beams, representative of the Orbiter PLB

longerons and keel, will incorporate lightweight Orbiter payload retention
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fittings which mate with standard trunnion fittings on large satellite

elements, The OMV and OTV hangars will include similar beam assemblies.
Utilites will be brought to the service/storage facilities from the main

utilities busses, as for modules.

3.4.3.5 Thermal Control Concept Evaluation

3.4.3.5.1 Introduction

Engineering evaluation considerations considered during this study were:
o Vehicle thermal environment (i.e., view factcrs, blockage, heat

fluxes)
o Radiator area requirements
o Orbiter impacts
o Design complexity
o Verification complexity
o Surface contamination sensitivity
o Hardware commonality
o Technology status
The following discussions will present a system overview and will assess how

well the "T" vehicle configuration satisfies these factors.

3.4.3.5.2 System Overview

The candidate Active Thermal Control Subsystem (ATCS), schematically
illustrated by figure 3.4.3.5-1, is a hybrid design concept that maximizes the
use of loccl thermal control for individual station modules and satisfies the
remaining thermal control requirements with a centralized system. Each
station module will contain a heat collection and transport system similar in
function to the Shuttle Orbiter cabin design (i.e., a puﬁping system,

coldplates, heat exchangers, plumbing lines and flow control valves). These
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individual station module systems will be integrated with a central transport

system. In addition, each station module will have heat pipe space radiators
(cperating at about 70°F) integrated with the module meteroid protection
shield. The size of these radiators will vary from module to module depending
on surface area availability considering docking ports, windows, thermal
blockage, etc.

When waste heat in a station mcdule exceeds its thermal capacity, the excess
heat will be transferred to a central collection and transport circuit for
delivery to a central truss-mounted radiator attached in the near vicinity of
the station modules. A separate high temperature radiator (operating at about
160°F) will be attached to the underside of the solar array truss to reject
electrical power system waste heat. Because the tramsport circuit (or
"thermal bus") uses a two-phase working fluid that transfers heat by
evaporation and condensation rather than by sensible heat changes of a single
phase coolant, it operates at a constant temperature over the entire length of
the loop. Furthermore, this "thermal bus" is capable of tramsporting large
thermal loads over lcng dis'.2nces with pumping requirements that are very
small compared to single rnase fluid systems. Table 3.4.3.5-1 summarizes the
10C weight and power estimates for the candidate ATCS concept.

A vehicle thermal system design which judiciously applies thermal coatings,
vacuum type insulations, isolators, and heaters will be selected for those
systems and elements which are not integrated into the ATC3. The system will
be selected to minimize the addition of electrical heat for thermal control
purposes. The systems which appear to require such a design, at this time,
are the communications (antennas), propulsion remote manipulator, and control

moment gyros. Heaters in these systems will eliminate thermostats and their
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Table 3.4.3.5-1,

I0C Active Thermal Control
Subsystem Characteristics

WEIGHT (LBS)

STATION ELEMENT DRY WET POWER (kW)
C/¢y 1,345 1,465 0.33
LAB, 2,621 2,945 0.89
LAB,, 1,803 2,002 0.52
HAB, 2,452 2,591 0.33
L0G, 485 514 0.06
MODULE* 10,785 10,915 0.22
TRUSS
POKER 4,139 4,269 0.16
SYSTEM
TRUSS**

TOTALS 23,630 24,701 2.51

*TRUSS-MOUNTED RADIATORS

v

ADJACENT TO STATION MODULES.

**TRUSS-MOUNTED RAD

IATORS AND ASSUCIAT

AND ASSOCIATED TR

ON UNDERSIDE OF "T" SOLAR ARRAY STRUCTURE,

ANSPORT SYSTEM LOCATED

ED TRANSPORT SYSTEM LOCATED




inherent failure modes by using sensors to feed software logic for heater
control,

An insulation/coating system will be selected for the habitable areas and
vower generation systems which compliments the active heat rejection systems.
Insulations and ccatings will be zpplied to unpressurized areas such as the
satellite service structure, OMV and OTV hangars in order to bound the thermal
envircnments within the payloads design envelopes thereby minimizing operation
of the payload thermai/control systems and station power requirements.
Virtually all elements of the "T" configuration receive direct solar energy
and will require surface treatments with low solar absorption of emissivity
ratios to limit structurzl temperatures and heat leak into the element. This
requires the application of paints and films since this cannot be achieved
with treated metal surfaces. Surface property degradation is discussed in
section 4.2.2.3.

The insulation system is envisioned as similar to the high performance
muitilayer insulation design applied to the Orbiter vehicle except having as
many as 20 layers of organically coated aluminized film as opposed to the 10
layers in the Orbiter design. This results in a weight of approximately 0.25
pounds per square foot including mesh separators, attachments, veuting
provisions, and cover material. The insulation weight for the "T" IOC and
growth configurations are 4,260 and 10,920 pounds respectively.

Local protection from RCS engines plume heating will be required. The extent
of the protection and its impact on design will depend on engine firing
requirements.

The propellant tanks of the monopropellant hydrazine propulsion system will be

intividually mounted on the command module and each will be maintained within
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temperature limits through passive thermal control. For the hot environment,
each tank (3.5 foot diameter) will be maintained below its upper temperature
limit by use of insulation and an appropriate coating. For the cold
environment, each tank and the fuel distribution system will be maintained
above its lower limit by the use of insulation and heaters. The heater
wattage needed for this purpose is shown in table 3.4.3.5-2.

Preliminary design indicates that the 25 pound thrusters will be placed in
clusters of 12 thrusters each and will be mounted on the command module next
to the propellant tanks. Passive thermal control of the thrusters and their
feedlines will be achieved through insulation of the cluster and the use of
heaters for the engines and lines. Heater wattage neeced is shown in table
3.3.3.5-2.

The thermal control heaters for the propulsion system are sized based on a

50% duty cycle.

TABLE 3.4.3.5-2

PROPULSION SYSTEM HEATER REQUIREMENTS

TANKS & FUEL DISTRIBUTION THRUSTERS & FEEDLINES
CONFIGURATION  # TANKS TOTAL AREA HEATERS # THRUSTERS HEATERS
FT WATTS WATTS
"T" - I0C 4 154 431 24 960
"T" - GROWTH 4 154 431 24 960

The passive thermal control design of the antennas is similar to that of the
Orbiter Ku-band antenna. Each electronics box will Le of minimal thickness
with the electronics mounted directly to a cold plate radiator located on the
large face of the box. The box will be covered with silvered teflon with an

absorptance/emittance Cﬁk)- .13/.8 . The radiator area for each electronic

332




box and internal heat generation for each different type of antenna is shown
{n table 3.4.3.5.-3. Also shown in this table is the heater wattage needed in
each electronic package to keep the electronics above their minimum
temperature.

The heater wattage needed to maintain the gyros, gimpals, and comparator of
the S/Ku-band steerable dishes above their minimum temperatures are shown also
in table 3.4.3.5-3. The heaters for maintaining minimum temperatures are
sized based on a 50% duty cycle. Antenna heater operation will only occur

when the antenna is off two hours or more.
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3.4.3.5.3 Technical Evaluation

3.4.3.5.3.1 Thermal! Environment

The orbital attitude of the big "T" configuration is a gravity gradient
stabilized earth-oriented mode. This causes constant terrestrial IR fluxes to
be impinging upon structures which are continually viewing the earth's
surface. Solar and albedo fluxes would be somewhat cyclic throughout the
orbit.

Shading of the modules and radiators from the sun by the solar array will
occur during only a portion of the orbit so adequate performance of thermal
coatings will be required. This problem becomes more severe at high solar
Beta angles due to the fact that the solar array does not shade the modules or
radiaters on the sunward side of the trucs. Therefore, the configuration was
analyzed at 52° Beta with the solar array pitched down 20° to understand what
impact a worst case thermal attitude would have on the thermal control system
architecture.

Orbital average incident thermal flux levels at Beta = 52° are shown for the
big "T" configuration in figure 3.4.3.5-2. Values given for the modules are
for the 50% of the surface area away from the truss structure. This is
representative of the location of body-mounted radiators, though actual
placement would be subject to optimization of incident flux, coating
performance, and blockage of space viewing factors.

The high incident solar and albedo flux levels on the sunward side module
mounted and planar radiators implies that a high performance thermal coating
be utilized (i.e. low 9 /¢ ratio) to maximize heat rejection capabilities.
Due to the differential in flux levels between the module strings and
radiators on either side of the supporting truss structure, it would indicate

that thermal load sharing be a major feature in the thermal control system
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design.

Figure 3.4.3.5-3 illustrates the average form factors to space for the various
structural elements. Space viewing is inhibited predominantly by the large
solar array and its pitch angle. Hangar placement next to planar radiator
surfaces further reduces radiation to space. The space viewing of the module
mounted radiators could be improved somewhat by mcre precise location than was
analyzed in the model. The optimal locaticn would also reduce solar/albedo
influences, though terrestrial flux would increase and the total useable area
might decrease slightly.

Though the large solar array does block space viewing Uy the structural
elements, it is not a continually hot structure while in the sun. The
earth-oriented mode of this configuration provides the array an average
orbital temperature of approximately 50°F. This relatively low temperature
characteristic permits the power system radiat-rs to be pcsitioned on the
surface of the truss structure behind the solar arrays. The local blockage by
the power system radiators of solar array backside space viewing could raise
affected cell operating temperatures by 20-40°F. How this impacts array
operating efficiencies has not been adequately assessed at this time.

The 10C version of the big "T" configuration will have higher space view
factors than the growth version, primarily because of the smaller size of the
solar array. However, incident solar flux levels will also be sl ightly higher
due to the decreased sun blockage. Thermal interaction between modules should
be of little consequence if body-mounted radiators are judiciously placed and
high performance multi-layer insulation is used between the outer skin and
pressure vessel. The IOC and growth versions of the big "T" should have

similar thermal characteristics.
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3.4.3.5.3.2 Radiator Areas

Radiator area requirements initially were defined for body-mounted radiators
(integrated with station module meteoroid protective shields) to determine
heat rejection capabilities for each station module. In general, the
effectiveness of the body-mounted radiators is fairly good since blockage from
surrounding vehicle elements is no: severe as discussed in paragraph
3.4.3.5.3.1. However, it was assumed that 50%Z of the cylindrical station
module wall area was not available for radiators due to interfacing structure
with the truss. As a result, body-mounted radiators reject only about 17% of
the station total waste heat as summarized in Table 3.4.3.5-4 ,
Truss-mounted one-sided radiator panels were sized to reject the balance of
the vehicle waste heat not aécommodated by the body -mounted radiators. For
I0C, truss-mounted radiators with a total radiating area of 7,314 ft“ are
required to reject the balance of the station module heat loads. A separate
set of truss-mounted radiators (operating at about 160°F) are located near the
solar array to provide electrical pover system heat rejection. Area
requirements for the power system radiators are 2,227 ft2. For the growth
station, the truss-mounted radiators for the station modules increase to
15,095 ft? and to 4,867 ft? for the power system.

The aforementioned radiators were sized to reject the total vehicle waste heat
load. Past studies have shown that the use of a thermal storage phase change
material can further reduce area requirements when large temperature
transients are encountered. These transients normally result from widely
varying environmental heat fluxes and/or internally generated vehicle waste
heat. For this study, the power system radiators were selected to illustrate
the potential application of thermal storage.

Because of the difference in day/night times and the difference in

339




L Al bt

ok G < M e ARG g v oty

wt

PSRN SRS
¥ v

ki

efficiencies between the fuel cell modules and the electrolysis modules, the

night time heat 1lnad for the power system is much greater than the day time
heat lcad. As menticr~ed, if part of the night time heat can be stored in a
phase change material for rejection during the day time, the power system
radiator area can be reduced further. One candidate for a phase change
thermal storage material for the regenerative fuel cell heat rcjection system
is Barium Hydroxide Octahydrate. Its density is 136 1b/ft3, melting point is
172°F, and latent heat is 129 btu/lb.

Preliminary analysis shows that the use of 236 1b. of this phase change
material would reduce the required remote radiator area by about 30%*.
Required radiator area and capability and applied heating loads without and

with thermal storage are shown in figures 3.4.3.5-4 and 3.4.3.5->

respectively. Although the weight of the phase change material and associated

hardware will probably be equivalent to the radiator weight reductionn, other
design considerations such as view factors and blockage may still favor the
use of thermal storage material. In addition, a thermal storage approach
permits a non-articulated radiator to be a viable station option.

(* Power system waste heat characteristics used in the thermal storage
evaluation were not the same as used in the final radiator sizes documented
earlier; however, the general conclusiomns reached and relative savings

demonstrated are valid.)

3.4.3.5.3.3 Orbiter Thermal Control Impacts

While the Shuttle Orbiter is docked to the station, heat rejection from the
Orbiter radiators is reduced about 15% due to blockage from surrounding
station elements. This reduction is considered acceptable since the Orbiter

probably will be powered down the majority of the time. There are no
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additional Orbiter thermal control impacts that can be identified at this

time.

3.4.3.5.3.4. Design Complexity

The primary design complexity involves the launch packaging, on-orbit
construction, and activation of the truss-mounted radiators. This operation
will require RMS to:

|. Remove radiator contact heat exchanger modules and radiator elements
from the Orbiter payload bay

2. 1Install contact heat exchanger modules on the station truss,

3. "Plug in" radiator elements into the contact heat exchanger. EVA

support probably will be required to make final fluid line connections.

3.4.3.5.3.5 Verification Complexity

Component level verification should follow that of previous programs with the
possible exception of life cycle tests. Items which fall into this category
are insultations, coatings, heater system components, and fluid distribution
system components. These tests with the possible exception of the heat pipe
radiators do not appear any more complex than those of past programs.

The question of verification complexity in the thermal area arises from
verification of the integrated thermal control design of the Space Station.
The recommended approach is to baseline ground thermal testing of typical
elements and interfaces based on design commonality (to the fullest extent
possible) supplemented by Orbiter in-tay or deployed testing of items such as
heat pipe radiators requiring unique environments. Testing during the Space
Station buildup would be limited to checkout type tests.

Since the thermal verification approach is not highly configuration dependent,

additional discussion is presented in the Subsystem Definition Section,

section 4.2.
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3.4.3.5.3.6 Surface Contamination

A high probability of thermal control surface degradaticn exists as a result
of the close proximity of RCS engines to station modules. Most surface
treatments are expected to exhibit and require low solar absorptivities which
will increase as a result of plume impingement.

The distance from RCS engines to radiators and solar panels should minimize
contamination of these surfaces. However, detailed analyses are required to

determine acceptability.

3.4.3.5.3.7 Big "T" TCS Communality

o Within Space Station

The gravity gradient stabilized orbital attitude of the big "T" Space Station
configuration causes similar thermal environments to be incident on the
modules when averaged over the Beta angle cycle throughout the orbital year.
High incident solar fluxes on one side of the module strings at high positive
Beta angles will be incident on the opposite side for high negative I-ta
angles. Therefore, the thermal control system will probably be designed for
environments at a median to these extremes with a full capability designed to
compensate for the total range. Since both module strings will have this
common design environment, placement of body-mounted radiators and selection
of thermal coatings will hold for both strings. The primary variables will be
the amount of internal equipment requiring thermal control and the
consolidated heat lcad to be rejected from each module.

However, the command and control modules will experience somewhat different
environments from the other modules. Also, the C/C modules are mounted on the
side of the truss structure, Preventing deployment of supplemental radiator
surfaces, as is possible with the module strings attached to the truss

surface. These differences decrease the overall TCS commonality to a small
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degree as thermal load sharing between modules will most likely be the design

architecture followed.

Power system thermal control will utilize common elements as the syste

m grows.,
Radiators located at the outer edge of the solar array will have a better view
to space and, as a result, need not be as large as those closer to the center

of the array. However, the thermal control hardware will be the same from

unit to unit.

RCS modules and antenna packages are assumed, at this pPreliminary stage of

design, to share thermal control elements such as electrical heaters,
insulation, etc. with the primary vehicle TCS.

o Commonality with platform

Specific thermal control system hardware components (insulation, cold plates,

hieat exchangers, radiators, etc.) from the big "T" Space Station could readily
be incorporated into a free-flying platform. Basic thermal bus architecture
would zlso remain the same or similar if the platform were to require a large !
thermal control capacity. The greatest divergence from the Space Station TCS

would be in heat rejection. If a module concept is utilized in the platform,

module-mounted radiators would most probably be used. However, a deployed

auxiliary radiator surface may be required to be articulated depending upon

the platform orbital attitude. If the articulation of radiators is required,

a fluid swivel or thermal slip ring, which is not requisite for the station

heat rejection, must be developed.

The utilization of high performance thermal coatings could be more critical on

the platform than on the big "T" Space Station. This is assuming that the

platform is not in the same configuration or orbital attitude as the station,

thereby allowing greater solar impingement on associated structural elements.
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The degree of therwual coating performance is dependent upon the actual

platform configuration and orbital attitude.

3.4.3.5.3.8 Technology Assessment

No vehicle unique technology requirements were identified. The on-going
OAST-sponsored thermal technolog ' program is further discussed in section

4.2.2.8.

3.4.3.6 Power Evaluation

3.4.3.6.1 Introduction

The Power System consists of three subsystens: Energy Conversion Subsystem
(ECS), Energy Storage Subsystem (ESS), and Power Management and Distribution
subsystem (PMAD). For the "T" configuration, the power system was designed to
supply an average of 75 KW at IOC and 150 KW for the growth phase station is
reached. The system was designed with the following groundrules:

1. Ten year operatinoal life was a design goal for the various
components.

2. A modular buildup scheme was used where practical.

3. Module changeouts were permitted to achieve the 10 year operational
life of the components and the extended life of the station.

4. EVA was minimized for buildup but was not prohibited.

5. A two hour period was baselined for an emergency energy storage
sizing criteria. This would allow for the loss of one complete changing
cycle.

6. A gravity gradient flight mode was assumed with 17° of Beta angle
correction available. This results in a solar array with approximately twice

the area than that of a solar oriented station.
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3.4.3.6.2 System Overview

The basic premise of the "T" configuration is to orient the array in such a
way so as to minimize the station r~g and thus the propellant required for
reboost. In order to accomplish this, the array is mounted so that it remains
"edge-on” to the velocity vector at all times (see figure 3.4.3.6.2-1). A
truss is provided on which the array blankets will be attached. As shown in
the illustration, the ESS/PMAD modules are located on the underside of the
array truss. This mounting will provide for short wire runs and thermal
control radiator mounting. The power transmission lines will have to run 280
feet to the station modules.

Since the array is "edge-on" to the velocity vector, the amount of sunlight
reaching the solar cells will vary throughout each light period. This is
illustrated in figure 3.4.3.6.2-], and results in several impacts to the power
system:

1. Sunlight is available for only one-half the orbit, which means that
the energy storage system must be 25% larger than with other solar oriented
systems.

2. The current and/or power from the array will follow a sine curve
relation and therefore, the fuel cell component of the ESS will load share
with the solar array until the array output reaches the power level required
by the station.

3. The ESS/PMAD modules are split in two parts in order to account for
the lightside load sharing requirements.

A breakdown of the weights is shown in table 3.4.3.6.2-1. The truss weights
are not shown with the ECS solar array.
The "T" configuration will also provide a convenient structure on which to

mount the solar array. The "T" will fly such that the array will remain
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\
\
/
180° [ A 0° == Orbit Position
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(Kw)
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ORBIT POSITION
Figure 3.4.3.6.2-2 “T" Configuration Solar Array Output

Variations With Orbit Position.
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Table 3.4.3.6.2-1. "T" Configuration Power System Characteristics

SOLAR ARRAY (ECS)

10C

Growth

REGENERATIVE FUEL CELL (ESS)

10C

| Growth

PMAD
ESS/PMAD Module
Habitat Module
Logistics Module
Laboratory Module

Comman/Control Module

Weight (1bs)
9,000
18,000

Weight (1bs)
4,689
9,377

Weight (1bs)
210
362
221
372
1,978

Area (ftz)
30,000
60,000

Volume (ft3)
1.34
6.70
3.53
6.56

23.64
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nominally edge-on to the flight path. Low drag Qas the cobjective in selecting
this particular flight path/configuration and it results in an array that is
approximately twice as large as an array which is oriented to the sun.

This orientation results is an array performance that is variable during an
orbit, i.e., array is edge-on to the sun when it first appears in the light
and progresses to a point such that it is perpendicular to the sun and then
begins to decrease again. This variable output will mean that the PMAD must
be capable of managing the array and the energy storage system outputs in load
sharing modes during portions of the orbit. The array output vs. orbit
position is shown in figure 3.4.3.6.2-2.

As in the other configurations, the arrays will require a box, wireguides,
blanket, etc. (see figure 3.3.3.6.2-2). On the first launch 1C,000 ft? of
array will be installed and will provide 25 KW for station use during buildup.
The array wili be attached to the truss at periodic locations and a mechanism

will be provided to deploy and retract the array when required.

3.4.3.6.3 Technical Evaluation

The following items should be considered for the "T" configuration:

1. The array for the "T" configuration will be at least twice as large
as for a solar oriented array.

2. The ESS will be larger by approximately 25% due to the varying power
output of the solar array. This necessitates load sharing with the fuel cell
during that portion of the orbit when the power output from the solar array is
less than what is required by the station. This also means that the
electrolysis unit must accommodate power input that varies from zero to almost
twice the normal input.

3. The PMAD will have to control these load sharing activities.
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4. The drag for this station will be minimized and therefore, the

reduction of propellant cost will be oftset by the increase in power system
complexity and size.

5. The station could operate in a stable altitude mode with total loss
of control and the solar array would continue to supply power.

5. The array will be attached to the support truss.

7. The power transmission lines will need to be 280 feet long to go from
the ESS/PMAD modules to the station modules.

8. The ESS, composed of RFC's, does not comply with the man-rated

redundancy specification until the third ESS/PMAD module is installed.

3.4.4 Operation Accommodation Evaluation

3.4.4.1 Configuration Design Considerations

3.4.4.1.1 Separation from the Space Station

The big "T" IOC shown in figure 3.2.4.1-1 illustrates two docking ports
located side by side (similar to the delta I0OC) on the positive velocity
vector in an LVLH system. This situation lends itself te the +Vbar separation
and return scenarios presented in section 4.11.

The location of the solar arrays on the T configuration may present a problem
during the proposed separation and return. The first major burn of the +Vbar
separation sequence is a 1.0 fps radial burn performed approximately 10
minutes after initiation of the sequence. The burn is performed about 100
feet in front of and 80 feet above the docking port. The plume flowfield
resulting from this radial burn may generate excessive torques due to the
large surface area of the arrays. Figure 3.4.4.1-1 illustrates tne situation
of the Orbiter separating from the T. The figure shows the VRCS plume
flowfield that would result from the initial burn of the sequence as it moves

away from the port.
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_- Note: Figure assumes one nose and two tail VRCS jets added to
Orbiter canted 459 from vertical.

Figure 3.4.4,1-1. VRCS Plume Dynamic Pressure Contours 354
(1" Configuration)




3.4.4.1.2 Return to the Space Station

The velocity vector return profile described in section 4.11 represents an
adequate approach trajectory for a vehicular rendezvous with the big "T"
configuration. The procedure should present nc major problems during the
return. However, concern may again arise regarding two vehicles docked
simultaneously to the station and plume impingement during the approach.
These problems will be discussed briefly in section 4.11 and should be

referred to here.

3.4.4,2 RMS Reach Capability

An integral subsystem of the Space Station will be one or more manipulators
remotely operated and used to perfrom a variety of operations. Some of the
more critical requirements of a station manipulator will be station assembly,
module removal, OMV/OTV berthing in the hangar area, deployment of the OMV/OTV
from the hangar area, as an aid to OMV, 0TV, and satellite servicing, and
possibly as an aid to Orbiter/station berthing. The analysis conducted in
support of this document emphasized the use of the current Shuttle RMS to the
maximum extent possible for assembly of the big "T" concept. 4 "special"
station manipulator was considered only for those operations which exceeded
the reach capability of the Shuttle RMS.

The RMS/station manipulator analysis was performed using the RMS Desk Top
Planing (RPS) developed for RMS mission planning activities and used to define
RMS payload handling capabilities and procedures for STS missions. The
program was updated and modified to include the big "T" configuration as well
as a generalized manipulator in the sense that the length of the manipulator
booms can be varied to accommodate larger reach envelopes than the current

RMS. The number of active joints can be reduced and the booms shoriened so
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that a Handling and Position Aid (HPA) type of mechanism caa also be

accurately simulated.

The manipulator analysis included herein, is based on a kinematic model of the
RMS :in that no rigid or flexible body dynamics are included. This limitation,
however, does not invalidate the teasibility of using the RMS for station
assembly since all modules handled are within the weight and inertia limits
verified for standard RMS operations. The study results are based on the
current RMS contrel algorithms and software and verify the reach capability as
well as the maneuver path for both the RMS and the station manipuiator. The
simulation also checks for singularities and joint reach limits. In summary,
all maneuvers studied for the big "T" configuration assembly sequence shculd
be valid with the exception of possible crew visibility constraints. RMS
operatoyr eye-point and CCTV views can alsc be generated using the RPS
simulation, and these results will be reported in future documentation.

In performing the kinematic analysis to assess the RMS capability to remove

station modules from the COrbiter payload bay and assemble the station, the
following assumptions were used.

1. Truss structure is assembled prior to module deployment

2. Port and starboard RMS's are availablie

3. Once the C/C module and an interface module are attached to the
truss structure, all remaining construction using the Orbiter RMS's will be
accomplished with the Orbiter firmly docked to the Space Station.

4. Grapple fixture location and orientation are identical on all
modules of the same type.

5. Payload bay locations consider only RMS reach capability and not

Orbiter c.g. restricticns.
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Figures 3.4.4.2-1 through 3.4.4.2-9 illustrate an assembly sequence for the
10C version of the big "T" configuration. Each tigure represents a "snapshot"
of the entire maneuver that was performed on the RPS simulation to verify the
RMS reach capability and that the entire maneuver path was free of RMS
singularities and that reach limits were not encountered. Each figure label

reads as follows:
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Big T Assembly - C/C Module
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Figure 3.4.4.2-2. Big T Assembly - Interface Module
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Figure 3.4.4.2-4. Big T Assembly - Second Interface Module



Figure 3.4.4.2-5, Big T Assembly - Third Interface Module
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Figure 3.4.4.2-6.

Big T Assembly - Habitat Module




Figure 3.4.4.2-7.

Big T Assembly - Second Lab Module
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Figure 3.4.4,2-8, Big T Assembly - Logistics Module
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Figure 3.4.4.2-3, Big T Assembly - Logistics Module
Final Placement Using Station Manipulator
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B-FlA-1
Configuration ——J
Flight Number -----

Component Identifier -

Trajectory Step ===—=—==-- -
The component identifier appears only in labels where more than one component
to be assembled is manifested in the cargo bay for that flight. The
trajectory step refers to the sequenced "snapshots" of the RMS configuraticns
during a specific maneuver.
Flight 1 carries tc orbit the truss structure as well as the C/C module and
one IM. The RMS assembly sequence shown in figures 3.4.4.2-1 and 3.4.4.2-2
assumes that the truss structure is deployed and that a grapple fixture is
located at the¢ required position on that structure for handling with the
starboard RMS. The truss structure is grappled with the starboard RMS and
positioned on the starboard side of the Orbiter as shown to allow adequate
clearance when maneuvering the remaining modules with the port RMS. The C/C
module is removed from the bay and positioned correctly with respect to the
truss. The details of how it is attached to the truss are not considered in
this part of the analysis. The combined structure is then repositioned with

the starboard RMS to allow the port RMS to grapply the interface module and

berth it to the C/C module. This concludes the RMS procedures for flight one.

All following flights assume the Orbiter is rigidly docked to the Space
Station.

Figure 3.4.4.2-3 shows the Flight 2 assembly sequence once the Orbiter is
docked to the IM. The starboard RMS is required to maneuver the lab module

from the Orbiter bay to its docked position on the interface module as shown
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in the steps of the figure.

Figure 3.4.4.2-4 and 3.4.4.2-5 represent Flight 3 in which an interface module

and the Station Manipulator (SM) are brought up. One IM is placed on tke C/C

wodule, while the second is "stored" on the IM assembly from Flight 1. The

rort RMS can accomplish the Flight 3 scenario alone.
Flight 4 docks the habitability module to the IM as shown in figure 3.4.4.2-6

using the port RMS.

Flight 5 which is illustrated in figures 3.4.4.2-7 and 3.4.4.2-8 is the last

tiight in which module assembly can be accomplished using only the Orbiter RMS

capability. The second Lab module 1is docked to the Lab module already in

place, using the starboard RMS. The logistics module is then docked to the

third interface module, taken up on Flight 3, where it will stay until the

"Station Manipulator (SM) is put in place on Flight 6,

Flight 6 will require that the SM be Placed on the truss Structure as shown in

figure 3.4.4.2-9 to allow completion of the module assembly, With upper and

lower arm boom lengths of 50 feet and 60 feet respectively, the logistics
module and interface module can be moved from the intermediate location at

which they were placed on Flight 5 to their final location. The remaining

interface module, turnel, and OMV hangar can be maneuvered into position using

the SM in conjunction with the Orbiter RMS on Flight 7,

3.4.5 Safety Accommodations Evaluation

The safety accommodations provided for the IOC Phage (Phase 1) were used for

the basic concept evaluation since this was considered the most critical with

respect to crew safety. The growth phase volume available increases the time
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of reaction to a leak to approximately one hour (se section 3.4.5.5).

Otherwise, the comments are applicable to both Phase [ 2nd Phase [V,

3.4.5.1 General

The big "T" configuration would appear to satisfy the gross requirements for
crew safety if it can be assumed that the detailed design requirements and the
operational constraints presently stated in Space Station Configuration Books

3 and 6 are imposed.

3.4.5.2 All Habitable Modules (Habitat, Laboratories, Interface and C/C)

Egress Capability

Dual egress paths from each module are incorporated. A backup Command and

Control facility will be in the Habitat Module.

3.4.5.2.1 Logistics Module

Book 3 Systems Requirements and Charac*teristics specifically exempts the
logistics module from the '"two or more entry/egress paths.’ The logistics
module has only one egress pach, the risk to a crewmember occupying this
volume during the occurrence of an accident forcing evacuation of the volume
could probably be reduced to an acceptable level by proper location of
equipment, adequate materials control, elimination of potential ignition
sources, and maintenance of adequate traverse clearance during operations in

the module.

3.4.5.3 Enclosure of High-Pressure or Hazardous Fluid Tanks

The logistics module will be divided into a pressurized section and an

unpressurized section. High pressure and hazardous fluids will be transported
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in the unpressurized section tec avoid the possibility of fluids preopagating
into other medules or cause overpressurization ol wne or more modules. te

separation distance of various tanks has not been de: ined.

3.4.5.4 lsolation of Mcdules after Accident Cccurrence

Une problem that arises from the provision of dual egress routes from a
habitable module is the complexity of the process cf sealing off that module
after such things as a spill of a toxic fluid. This suggests the desirability
of a self~contained environmental control circulation system for modules such
as the laboratories to minimize the pctential for cross~contamination of
nodules while the hatches at each end of the contaminated module are being

closed.

3.4.5.5 Reaction Time after O currence of a Leak

The Safety Division position, with respect to hatch management, is that all
hatches should be normally open to create easc of transit from module to
modul 2, reduce the wear on hatch mechanisms, prevent hatch opening
difficulties because of small pressure differentials, and maintain the maximum
volume for bleed down in case of a leak. Of these reasons, the last is
probably most significant, considering the large number of sealing surfaces
and the increased potential for a leak. In the 10C configuration of the big
"T", a rough calculation of the time to react to the occurrence of a leak
equivalent to a one-inch diameter hole would be about 30 minutes, assuming a
95 percent efficient orifice, an occupancy of 25% solids in the station, and a
reduction of pressure from 14 to 9.1 psia. If a leak detector sufficiently
accurate to determine the module containing the leak is available, this should
allow adequate time to react to the occurreuce by evacuating and sealing ort

the affected modulie.
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3.4.5.6 EVA Operations

The antenna locations are apparently such that radiation hazards to EVA
crewmembers are minimal, but some Reaction Control System (RCS) package
locatiorns may require thruster deactivation during EVA. The system geometry
shculd allow ready design and implementation of adcquate EVA traverse and work

station retention mechanisms.

3.4.5.7 Repair and Reactivation of Modules after an Accident

Adequate airlock provisions are provided to allow Intervehicular Activity
(IVA) suited reentry into a module that has been isolated because of an

accident to perform necessary repair or reconfiguration to permit continued

use of the module.

3.4.5.8 Multiple Orbiter Docking Ports

The ability to dock with and access the Orbiter from various volumes of the

Space Station is acceptable.

| 3.4.6 Cost Evaluation

| ' 3.4.6.1 Groundrules and Assumptions

The following groundrules and assumptions were used in the cost analysis for

the big "T" configuration:

o The Space Station Cost Model (SSCM) developed by Planning Research
Corporation (PRC) was used to develop hardware and system level costs.

o The concept was treated as one work package.

o The IOC conrigurati..n only was costed.

o No 'earning was assumed,.

¢ No ex;licit reserve was included.
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o No STS flight costs were included

o Subsystem costs were allocated to the modules on the basis of weight.
o Costs are expressed in millions of 1984 constant year dollars. Since
SSCM outputs costs in 1982$, the inflation adjustment was made using the NASA
R&D inflation index (1.175 for 1982 to 1984 dollars).
o Program level costs (including fee) were included using the Code B
factors.
o Complexity factors considered to be 1.0 except the following:
o Closed loop ECLS was costed using the open loop ECLS CER with 1.6
complexity factor. Factor based on CDG trade study.
n Berthing and docking adapter used a 0.8 complexity factor and used
the ASTP adapter as an analogy.
o Complexity factor of 0.6 used for fuel cell based on JSC analysis.

o GSE complexity factor of 0.8 was used, based on CDG cost estimate.

2.4.6.2 Presentation of Results

Figure 3.4.6-1 presents the results of the SSCM for the big "T" approach. The
model computes the DDT&E and the first unit costs. The costs shown are for
one of each Space Station module or element (i.e., hab module, boom array,
etc.) Therefore, figure 3.4.6-1 does not show the total cost of the station.
Figure 3.4.6-2 presents the DDT&E and First Unit Costs after being spread to
the different modules. The three parts tc this figure present cost spreads by
module for DDT&E, Production, and total costs. As with the previous figure,
the costs shown for the production phase are for the first unit of each of the
modules.

Figure 3.4.6-3 presents the summary of the costs by quantities and types of

modules that comprise the I10C configuration. The first two cost columns recap
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FIG. 3.4.6-2C
COST SUMMARY- DELTA CONCEPT

0DTE + FIRST UNIT

SUBSYS COST (MILLIONS OF B4 $¢)

SUBSYSTEN TOTALS C/C HAB LAB IMI A/L TRS OMV TNL LO6
STRUCTURE 1059 130 223 126 113 88 177 50 sS4 099
..PRESSURIZIED 97 72 10 72 &3 &3 0 0 M 72 ’
.. SECONDARY 36 0 % 0 20 20 105 2 0 2
..DOCK & BERTH 50 4 & 10 1 W 0 0 0 4 .
.. MECH’ ISMS 157 4 4 ¢ B 10 77 0 2
THZRMAL 251 42 29 88 1 0 9% 0 0 |
ENEC 23301 3 3 101 108 0 0 0 0
..ELECTRONICS 162 1 3 3 80 & 0 0 0 0
..CHg 83 0 0 0 2 0 0 0 0
.. A6 TORBUERS 8 8 0 0 0 0 0 0 9 0
RCS 1 0 0 0 0 0 0 0 0
POMER 450 8 6 6 0 LU ¥{ 0 0 L
..SOLAR ARRAY 218 0 0 0 0 0 278 0 0 0
.. BATTERIES 0 0 0 0 0 ¢ 0 0 0 0
..COKD & REB 3 8 b 6 0 0 0 0 0 4
..FUEL CELL 147 0 0 0 0 0 & 0 9 0
CoM & DATA 93 183 3 B8 4 i 8 8 0 3
ECLSS 397 143 125 33 0 0 ¢ 0 0 75
CREW PROV o4 6 54 3 0 0 0 0 ¢ 0
THROUGHPUT 0 0 0 0 0 0 0 0 0 0
SUBTOTAL 2757 484 477 308 219 200 775 58 S4 18l

. SYS TEST HDNE 1213 255 225 W47 127 116 42 B 38 B4

INT, ASSY, 4C/0 M5 S6 M4 3 X B & 1 5 N
SYS TEST 0PN G0 128 113 4 &4 5P 122 19 19 42
&R SPT EQT 692 98 8 57T 45 45 9 15 15 32
SYSENGR & INT #4583 78 50 40 3% 106 11 11 29
PROG MGNT M6 0 T2 &% MO39 9
TOTAL 6334 1178 1107 717 S8 S1f 1537 157 151 17
PROG SPT (141) 887 165 1S5 100 78 71 25 22 21 58.42
N6T L INT (51) 3167 63 AL 32 W9 88 9 923719
FEE (B2) 807 113 106 49 53 49 147 15 15 39.9%
T0TAL BI8Y 1523 1431 927 722 &40 1587 203 19 539 376
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BI6 T CONFISURATION

COST SUMMARY BY MODULE
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297 187 Y 484
263 214 214 477
172 136 272 444
149 10 140 289
136 65 129 263
283 493 493 175
H 14 14 58
H 9 9 34
98 83 83 181
1486 1211 1542 2787
1273 0 0 1273
173 140 169 344
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250 164 199 449
4651 1684 2043 6693
651 238 86 937
263 9% 116 382
5 161 196 641
6012 an 2641 8633




the totals found in figure 5.4.6~2 for DDT&E and Production (First Unit). The

-~

third cost column is the total production costs taking into account the
quantities of each module or element. The final column is the total of the
DDT&E and Production costs and is therefore, the total of the Space Station at

10C.

378




3.5 Summary Evaluation

The three Space Station contiguration concepts presented met all the
requirements set forth for this study. They do perform different functions
better, depending upon thei. design concept purpose, but they all do
reasonably well on the evaluation criteria that were imposed.

Some of the most important conclusions that can be drawn from this study
concern those variables which do not appear to be strong discriminators
between the three quite different configurations. The first of these is cost
Despite the attempt to minimize the total hardware requirements in the
Building Block configuration, its cost to IOC, as shown in table 3.5~1, is
actually higher than that of the Delia configuration, which includes an
extensive truss structure absent from the Building Block configuration.
Furthermore, even the addition of twice the solar array size to the "T"
resulted in its cost being only 10% greater than that of the delta; a
difference considered marginally significant at the level of the cost
analysis. Second, the number of launches to reach the I0C state was found to
be * one launch out of seven, again not significant at the level of the
current manifesting study. The extensive vehicle dynamics study concluded
that the propellant requirements differed, between the low~drag "T" and the
relatively high drag Building Block, by less than 2,500 1bs. every 90 days,
again not a significant discriminator; refer to table 3.5-2. The operations
study also failed to find any of the configurations unacceptable from either
an assembly or other operations standpoint; i.e., rendezvous and docking
procedures are not significantly complicated by the inertial orientation of
the Delta. Although the momentum storage requirements for the three
configurations differ somewhat, that is also not considered a discriminating
factor since all three are well within the state-of-the-art, and the cost

impact of additional CMG units is minimal.
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From a user accommodation standpoint, the use of a TEA flight mode for all

three configurations was found to be highly desirable since it significantly
reduces the need for RCS firings and hence, minimizes the periods of
acceleration disturbances and sensor contamination. The basic earth
orientation of the building block and "T" configurations is considered more
desirable than the inertial orientation of the Delta for stellar and earth
observations, but the capabilities of the Delta are found to be adequate; this
difference is not a discriminator between the configurations.

The Building Block configuration provides the opportunity for solar region
observations from a pressurized laboratory element, while the Delta provides
this capability only from the command and control module and the "T" provides
almost no such opportunity. However, there is no recognized requiremert for
such directly manned observations, and the placement of solar sensors on the
solar array trusses of the "T" and Delta configurations provides excellent
fields of view and minimizes the contamination encountered.

The most important discriminators from a user standpoint appear to be those
associated with versatility and growth, The way in which the Building Block
concept is configured in this study provides laboratsry modules on the growth
configuration in addition to those required. This provides more user
pressurized volume than that contained in the Delta or "T" concept. However,
the utilization of these modules is sevarely restricted by the difficulty of
their removal for reconfiguration or repair. In addition, the extreme
difficulty of increasing the power on the Building Block concept beyond that
originally planned implies limitations to the uses of the station. The
compact nature of the Building Block also limits the usefulness of the

available berthing ports for payloads since clearance and access are limited.




The "T" and Delta configurations provide easy access to the berthing ports for
payloads; and the exposed truss sections between the two "legs" of the module
arrangement provide large versatile and accessible areas for not only earth
viewing instruments, but unpressurized payloads of other types.

The separation of the solar and stellar viewing instruments on the solar array
truss of the "T," and of the solar instruments on the Delta, from the modules
is seen as a disadvantage from the standpoints of access by EVA or
manipulators ana for signal, command, etc., transmission. Thus, the "spread
out" configurations of the "T" and Delta provide both advantages and
inconvenicnces from a user standpoint.

The basic crew accommodations provided by each configuration are essentially
the same since interior and mbdule arrangement options were not included in
the study. However, the external configuration was found to affect crew
accommodation in the aspects of EVA operations and external viewing. In
general, the larger Delta and " configurations were considered undesirable
because of the long distances between the pressurized modules and equipment
and experiments mounted on the solar arrays. These distances are considered
significant because the length of time required to reach these destinations
for equipment maintenance or experiment servicing was perceived to be
substantial and because direct visual depth perception is lost from the
position of an observer in the modules. The viewing capability thought to be
desirable includes continual direct visual contact with an EVA crewman and
with the RMS end effector from the interior, as well as the ability to
visually inspect the major elements of the station. From the viewing

standpoint, none of the configurations as defined was judged to have the
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desired number of windows, but the Delta and "T" were further considered
undesirable because the truss structure inherently obstructs sowe fields of
view,

The structural dynamic differences between the three configurations are
significant from a control System standpoint; the Building Block concept, in
particular, would require a more sophisticated design, with attendant
impliications on verification, both of the structural math models and the
control software. The control and elastic body frequency ranges of the three
cenfigurations are presented in figure 3.5-1 to illustrate this point.

The interface and mechanical systems requirements of each of the three
configrraticns are found to be significantly different. The Building Block
concept utilizes a universal, although complex, interface between modules t»
provide all utility connections 2 well as to perform the structural
functions. In addition, a highly complex mechanism is required to cennect the
oriented solar arrays, antznnas, and radiators to the module assembly. This
specific interface is expected to require maintenance since it is in
continucus use, and nc means of performing this maintenance has bern
identifjed. This is, in fact, viewed as a major technical challenge
associated with the Building Block configuration.

The mechanical and interface systems required with the Delta configuration are
essentially all associated with initial deployment or reconfigurar-ion, except
for the RMS and berthing systems common to all configurations. The many
different mechanisms associated with placement of major elements on the truss
structure have not been fully defined, but the number of different systems
involved is seen as some disadvantage. However, it is n~oted that these will
each be somewhat simpler than the universal interfaces associated with the

Buildiag Block configuration. Notably absent from the Delta is the
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continucusly mecving interface with the solar array boom. Further, the
truss-mounting of all major elements makes the interfaces between modules, and
the level of redundancy required to comp»nsate for loss or remova. of a
module, less demanding. In contrast, the large size of the Delta (and also
the "T") requires a longer reach for the RMS, and perhaps the use of more
joints in the RMS, arms than does the Building Block configuration.

The "T" configuration, although requiring a mechanism for tilting the solar
array truss, shares most attributes with the Delta from an interface and
mechanical systems standpoint. Since the rotation of the truss is only
through * 17°, the problems associated with continuously moving interfaces on
the Building Block configuration are not present. Further, no moving fluid
connections appear necessary. The large truss structures associatec with the
"T" and the Delta can be considered mechanisms, and an apprehension exists as
to the success of the deployment of these trusses. The most significant
uncertainty, and hence apprehension, associated with these trusses appears to
be in the addition of truss area to an already deployei truss., This operation
is required to establish the IOC "T" configuration, and hence, is seen as a
disadvantage. However, this same type of operation is also required to expand
the Delta to the growth configuration and therefore, also pertains o it.

In the thermal control area, specific differences are found in the required
radiator area on the three configurations, as shown in table 3.5-3. These
differences are inherent in the configuration, and show an advantage for the
Delta. Since the configuration also avoids the necessity for rotary joints in
the coolant loops, this is considered significant. The "T" configuration
suffers the disadvantage of not only requiring added radiator area for the

power modules because of the oversized power module capability, but alsc
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because the viewfactors of the radiators which reject heat from the modules is
poor.

The Delta configuration appears to be preferable from a power system standpoint.
The solar array can be expanded in any desired increments, with individual packaged
modules consisting of solar array, conversion and storage equipment, and radiator
panels. No moving connections are required. The oversizing of the array by 10% to
account for Beta angle losses is not a significant penalty. The Building Block
configuration, on the other hand, ie limited in power growth with planar solar
arrays. Rotating joints capable of transmitting conditioned power are required on
the Building Block configuration. The "T" configuration, while sharing some of the
attributed of the Delta, requires twice the capacity in the solar array and
electrolysis units, and to minimize storage requirements, a more complex power
control system is envisioned which takes advantage of the power available from the
array at low sun incidcace angles.

The power profile analysis discussed in 4.12, while not unique to

configurations, is noteworthy here in that the power levels required at IOC

for operation of the Space Station, exclusive of that icated to payloads,

was found to be on-the-order of 50 KW. Thus, if the payload power levels of

60 KW for I0C and 120 KW for growth are accurate, the IOC station may require

50% more power than currently projected. Some level of power above 150 KW

would also be expected for the growth station. 0a this basis, the

practicality of adding power to the station in increments and without severe
penalties should be considered an extremely attractive feature. This feature

18 most evident in the Delta, while it appears to be totally absent in the

Building Block configuration. The "T" configuration, while it possesses the
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capability of additions to the truss size, may raise the issue of practicality
above the 150 KW level simply due to the extremely large cell array required. One
other disadvantage to the Building Block configuration is associated with the
minimal structure of the deployed solar array and the requirement for the OMV,
Orbiter, OTV, etc. to operate in close proximity to the arrays, since they are
mounted on booms connected to the module assembly. This disadvantage is that
plumes from the RCS of the proximity-operating vehicles will of necessity impact
the array at significant incidence angles and at relatively close distances. The
resulting forces could disturb not only the solar array blanket, but also the
entire, higherly flexible structure. Although detailed analysis remains to be
accomplished, the resulting mqtions could cauge severe problems with the structure,
blanket, and perhaps with vehicle attitude control.
The communications system is shown to be very sensitive to vehicle orientation,
highly favoring the velocity-vector orientation of the Building Block configuration
and "T" concepts. This derives from the requirement to communicate with proximity-
operating vehicles in basically the same orbit. To meet a full time coverage
requirement for such communications spherical coverage is required on the Delta.
Antenna requirements are summarized in table 3.5-4. Although this is not viewed as
a technology problem, some system complexity is added to manage the many more
antennas the delta requires in addition to their cost and maintenance requirements.
The significant conclusions that can be reached on the basis of the current study
seem to be as follows:

1. The design driver of minimum propellant for RCS orbit altitude maintenarnce
appear not to be important in selecting a starion concept for the 270 n.m.
altitude. If lower altitudes are required, this could alter the propellant usage

considerably. Proper design and implementation of any concept appear to be capable
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of reducing differences to a negligible level.

2. While the users tend to prefer a velocity-vector, local vertical
orientation, an inertially-oriented station appears to be adequate from both the
standpoint of user requirements and proximity operations.

3. From the system and subsystem engineering evaluation, the BB and "T"
configuration were similar with respect to the communications and tracking
function; however, the Delta configuration requires additional antenna for the same
coverage.

4, A significant difference from the user and crew operations perspective is
that the Delta and "T" place some of the equipment, including observation
instruments, significant distances from the pressurized modules. Thus, these
configurations imply the use of "long distance" EVA and RMS operations, seen as
undesirable.

5. From the standpoint of growth and mission versatility, the Delta and (to a
lesser extent) the "T" are seen to be advantageous.

6. Absence of detail in the interfaces between the truss and subsystems,
payloads, modules, etc., in the nature of the OMV and OTV hangar structure, and in
the RMS, Orbiter, EVA, etc., operations associated with all three configurations

appears to be primary impediment to a complete evaluation.
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